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Abstract

When researchers suspect that error terms are correlated by group in observational

research the standard correction is to cluster the standard errors. But what about in

experimental contexts where treatment is randomised? Despite their ubiquity in anal-

yses with group-constant variables, the rationale for using clustered standard errors

in experimental contexts remains underdeveloped. In this paper I present an intuitive

and applied explanation of when clustering is appropriate, building on recent contribu-

tions in the statistics and econometrics literatures. I demonstrate why randomisation

does not lead to identical variance estimates across estimation strategies, and conduct

a review of experimental studies published between 2017 and 2019 to show that these

differences can be considerable. Finally, I provide practical guidance for when and why

to cluster standard errors for common experimental designs.
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Standard errors help indicate the probable bounds of a point-estimate under the assump-

tion of repeat sampling. We use these bounds to limit the likelihood of committing a Type

I error (wrongly rejecting a true null hypothesis), and thus to assess our confidence over a

given statistical finding. Standard errors are integral to our practice as experimentalists.

Without them point-estimates of the average treatment effect (ATE) from finite samples

are meaningless. We would not know the precision of the ATE and, crucially, whether it is

distinguishable from a null effect.

Despite their foundational importance to statistical analysis, guidance for applied re-

searchers on which estimator of uncertainty to use is still developing. Conventional esti-

mates of variance are known to have serious limitations – for instance when observations

in a dataset are clustered (Moulton, 1986; Liang and Zeger, 1986) or when residuals are

heteroskedastic (Huber, 1967; Eicker, 1967; White, 1980). But we know less about when to

justify the inclusion of modified variance estimators in our analysis, particularly outside of

observational research contexts (Blattman, 2015; Abadie et al., 2020). Too often researchers

seem to default to whichever variance estimator provides the most conservative (widest)

uncertainty bound. The problem with this approach is that researchers often neglect that

variance is a quantity to be estimated. Choosing the wrong estimator leads to incorrect

inferences.

Neglecting the estimation of uncertainty is particularly acute in experimental research.

Advances in the design of both in-the-field and online experimental apparatus have enabled

scholars to estimate causal point-estimates across a wide variety of topics. The experimental

method allows researchers to assume away the problem of selection bias when treatment

assignment is randomised. But what about bias in the standard error? Does randomisation

allow us to assume away potential biases of the corresponding variance estimates too?

There are numerous contexts in which it appears that experimental researchers should use

some non-standard variance estimation strategy. In particular, observations within experi-

mental research often involve multiple observations within groups. When individuals take
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part in repeat-observation tasks, randomised control trials (RCT) measure multiple observa-

tions within a “treated” geographical area, or researchers leverage some natural randomisa-

tion, there is likely to be a group-structure to statistical models’ error terms. Randomisation

of treatment in these protocols ensures regression coefficients are unbiased. But despite the

temptation to think that this also solves the problem of clustered data, randomisation of

treatment does not guarantee that errors terms will be uncorrelated within groups (Abadie

et al., 2017).

Developed in the 1980s (Moulton, 1986; Liang and Zeger, 1986), cluster-robust estimates

of variance continue to be refined and compared in the statistical and applied literatures

(Esarey and Menger, 2019; Jackson, 2019; D’Adamo, 2019). It is now commonly accepted

that failing to account for clustering can lead to downwardly biased standard errors increasing

the likelihood of a Type I error (Wooldridge, 2003).

The incorrect application of clustering estimators, however, can itself result in biased

standard errors. While the conventional expectation is that cluster-robust estimation inflates

variance compared to conventional estimation (Wooldridge, 2003; Cameron and Miller, 2015),

studies show that clustering can downwardly bias variance estimates too (Esarey and Menger,

2019; Jackson, 2019). Even when clustered standard errors are larger than their conventional

counterparts, they may nevertheless substantially underestimate the true variance (Imbens

and Kolesar, N.d.).

Fewer works, however, have examined variance estimation issues from the perspective

of randomised experiments specifically (Green and Vavreck, 2008; Schochet, 2013; Cameron

and Miller, 2015; Abadie et al., 2017). In particular, there is little specific guidance for

experimental researchers on whether to use modified variance estimators when the data gen-

erating process includes some group-level, clustered component. Those that have considered

this issue have offered disparate and often conflicting advice. While Cameron and Miller

(2015) argue that clustering is inconsequential in experimental contexts due to randomisa-

tion, Abadie et al. (2017) argue that the decision to cluster is a “design-based” decision
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dependent on both how observations are sampled and how treatment is assigned. When

should experimental researchers, therefore, cluster standard errors?

In this paper, I distil the latest research from the statistics and econometrics literatures

on variance estimation (Cameron and Miller, 2015; Abadie et al., 2014, 2017, 2020) to provide

an intuitive and practical guide to when and why experimental research designs should use

clustered standard errors. In particular I make three contributions.

First, I provide a simplified argument about when to use cluster-robust variance estima-

tion in experimental contexts. Building on the design-based approach to clustering developed

by Abadie et al. (2017), I show how both sampling frames and treatment assignment matter

for correct variance estimation. In short, researchers should cluster experimental errors when

either sampling is done at the group-level (and one wants to infer to groups beyond the data)

or treatment randomisation is intentionally correlated within groups.

Second, I demonstrate the implications of this argument using Monte Carlo simulations

and a comprehensive literature review of experimental studies published in the Journal of

Experimental Political Science. I show that even in completely randomised experimental

designs there are likely to be considerable differences in the magnitude of conventional and

cluster-robust standard errors. Correcting variance estimations in three published articles,

moreover, I demonstrate that in practice these errors can be more than twice their original

reported size.

Third, I emphasise how making valid statistical inferences in experimental research has

to focus on both β̂ and var(β̂). One tempting approach to variance estimation is simply to

report whatever variance estimator produces the largest standard error. We do so to hedge

our bets against committing a Type I error. But this “largest error” approach makes the

implicit judgement that a Type II error (failing to reject a false null hypothesis) is the lesser

statistical evil compared to its Type I counterpart. This paper resists this claim on two fronts.

From a statistical perspective, without considering the underlying data generating process,
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cluster-robust estimates may not be a conservative estimate of the true variance.1 From a

hypothesis testing perspective, correctly estimating variance (irrespective of its comparative

size compared to other estimators) is an intrinsic part of making unbiased, scientific claims.

A Type II error should concern researchers just as much as a Type I error. Over-estimating

variance can lead to “file-drawer” problems – where true null results go unreported, biasing

our research findings – if incorrect variance estimation leads to overly cautious estimates of

standard errors.

The remainder of this paper proceeds as follows. Section 1 provides an account of why

uncertainty matters, and the different forms it can take, in experimental research. Section 2

motivates the design-based logic of Abadie et al. (2017) to provide a simple, principled and

easily-implementable variance estimation strategy for experimentalists. Sections 3 and 4 then

demonstrate the importance of correctly estimating variance using Monte Carlo simulations

and replication data respectively. Finally, Section 5 provides concrete guidance for two

common types of experiment – randomised controlled-trials and conjoint experiments.

1 What is uncertainty in an experimental context?

Suppose an experimentalist wants to estimate a simple parameter like the average treatment

effect (ATE; τATE). To do so, they draw a series of observations – from a convenience sample

like a student subject pool, or from a representative sample of a national population – and

randomly assign individual units to treatment and control. Taking the mean difference in

outcome between these two groups of observations, the researcher recovers an estimate of

the ATE (τ̂ATE).

Estimation implies uncertainty. It is an approximation of the true value. What the “true

value” corresponds to, and therefore the extent of uncertainty over an estimate, will depend

1Note for instance that Cameron and Miller (2015) argue that in contexts where there is potential clus-
tering one should compare conventional and cluster-robust variance estimators and opt for the cluster-robust
estimate if there is an ‘appreciable difference’ (p.17). But this is only the correct strategy if we know that er-
rors are in fact clustered at some group level and, moreover, that the separate assumptions for valid clustered
variance estimation hold for the given data.
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on how the researcher wishes to generalise their findings. From a very narrow perspective,

the researcher may claim their is no uncertainty over their estimate. Given the specific set

units in the sample (S), their assignment to treatment and control (Z), and the experimental

context (E), we can calculate the average effect on the outcome exactly. In other words,

conditional on the sample, randomisation, and experimental conditions, the recovered ATE

estimate is the true value conditional on those same features:

E[Y (1)− Y (0)|S,Z,E] = τ̂ATE = τATE|S,Z,E (1)

Researchers, however, typically do not want to simply estimate this conditional effect

and instead wish to generalise their result. In other words, researchers want to drop at least

one of S, Z, and E from their claims; doing so is equivalent to generalising over a wider

population, different treatment assignment schedules, and or contexts.2

E[Y (1)− Y (0)|S,Z,E] = τ̂ATE ≈ τATE (2)

Generalisation involves uncertainty because we try to infer the parameter value for data

which the researcher does not observe. Note in Equation 2 that the same estimate of the

ATE is only an approximation of the unconditional ATE. Typically we are concerned with

uncertainty that arises due to finite sampling issues. Out of the universe of cases (the

population), researchers are only about to collect data on a small proportion of these (the

sample). The uncertainty of a parameter estimate corresponds to the fact that we wish to

make a generalisable claim about the population from the data in our sample. In other

words, we want to make a claim that includes units s′ /∈ S.3 Since in practice the researcher

2E captures features of the experimental environment – the mode or lab conditions, general experimental
protocols, and other contextual factors – that condition how the experiment was conducted. Generalising
over E captures external validity concerns – how well does the parameter estimate approximate the true effect
in other experimental or non-experimental contexts. For instance, would a causal effect of an information
prime delivered on a screen in a lab hold in a “real-world” context like a get-out-the-vote field experiment?
For a more in-depth discussion of replicating effects across experimental contexts see, for example, Duch
et al. (2020).

3For instance, consider the set of numbers 3, 2, 4, 9, 1. The true mean of the set is 3.8. If we only ever
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typically only samples from the population once, uncertainty over the estimate quantifies

the probable bounds of the parameter given those units not in the sample.

This “sampling uncertainty” is the basis of variance and standard error calculation in

most statistical research. However, it is just one particular form of uncertainty as a con-

sequence of finite data. Various other factors may not be fully observed as a result of the

one-shot nature of data collection, including how the estimate of the average treatment effect

might differ if the treatment assignment schedule (Z) were different.

From a vast number of equally-probable assignment schedules we only observe one par-

ticular draw (Abadie et al., 2014). The notion of “causal” uncertainty, where there are many

potential assignments, is the foundational basis of Neyman’s randomisation inference (Ney-

man, 1990) yet receives less attention in current experimental research. Given a distribution

of potential treatment assignments and resultant outcomes, how outlying and therefore sig-

nificant is the observed difference between treatment and control? The substantive concern

is, holding constant the subjects within our sample but re-randomising them into new treat-

ment and control groups, how much would we expect the observed effect to differ? This

question is inherently counterfactual. Unlike in the case of sampling uncertainty, where it is

plausible to draw new observations from the population, we cannot draw new, unconfounded

assignment schedules for the same individuals because they would already have been exposed

to one treatment arm or another.

The counterfactual nature of this uncertainty does not negate the importance of it to

researchers interested in estimating the true causal effect of a stimulus. To see why, consider

the potential outcomes in Table 1. Note that all individuals perform uniformly except

individual (i = 3) who always reports the same outcome regardless of the assigned treatment

condition.

The true average treatment effect is 1
M

∑M
i=1 Yi(1) − Yi(0) = 4.2. Suppose that the

randomly drawn assignment vector Z = {1, 1, 1, 0, 0, 0}. Our best, unbiased estimate of the

sample two values our estimate will range from 1.5 ( 1+2
2 ) to 6.5 ( 4+9

2 ).
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Table 1: Potential outcomes for six individuals under treatment and control conditions

i Yi(1) Yi(0)
1 10 5
2 10 5
3 10 10
4 10 5
5 10 5
6 10 5

ATE is the difference in means between those actually treated and those actually in control,

Yi1(1) − Yi0(0) = 10 − 5 = 5. But now suppose we draw a different assignment vector

Z
′

= {0, 1, 0, 1, 0, 1}. In which case, the ATE estimate becomes 10 − 6.7 = 3.3. Z and

Z
′

are equally likely assignment vectors given equiprobable treatment assignment. Neither

perfectly estimates the true causal effect for this population of six individuals. Different

potential assignments therefore result in different ATE estimates even though the sample

(and potential outcomes) are constant. Hence, for any single random draw of assignments

there will be uncertainty over the estimate as a result of the randomisation procedure.

Variance in the estimated ATE for different assignment schedules is explained by treat-

ment effect heterogeneity. In our simplified case, one of the six individuals is impervious to

the treatment. The effect of treatment on this individual is zero, while for the other five

individuals the effect is a uniform increase of 5. Causal uncertainty in the average treatment

effect is a function of treatment effect heterogeneity – a common, and increasingly important,

concern in experimental research (Grimmer, Messing and Westwood, 2017). When a given

treatment has heterogeneous effects on a given sample, then the specific random assignment

of treatment will result in an unbiased albeit uncertain estimate of the true ATE.

In general, when we extrapolate from a finite set of observations to a broader phenomenon,

there will always be some form of uncertainty. This can be as a result of a finite number

of units sampled from a wider population, or it can be as a result of inherently stochastic

procedures like randomisation. Our statistical estimation in both cases are a best effort
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to infer, from incomplete data, a generalisable claim. Causal uncertainty is frequently ig-

nored by experimentalists, despite its natural connection to randomisation procedures and

our growing focus on heterogeneity in treatment effects. In fact, claims about the nature

of the uncertainty estimated by researchers are rarely made explicit in research. Despite

this, causal uncertainty is important to experimentalists – the controlled randomisation of

a prime, vignette, or other condition means there are unrealised potential assignments over

the estimate as a function of how treatment was randomised – irrespective of the number of

observations relative to the population.

Moreover, understanding what type of uncertainty one is estimating has a substantive

impact on the values in question. As Abadie et al. (2014) show, conventional estimates of

uncertainty (based around the assumption of sampling uncertainty) can be overly conser-

vative estimates of the causal uncertainty – namely, the uncertainty due to other potential

random treatment assignments. And as other statistical features are added to the data,

like clustering or multiple observations per individual, researchers want to avoid erroneous

claims about this uncertainty due to assumptions in the variance estimator about either the

assignment or sampling procedures.

Sometimes experimentalists may simply want to ensure that their intervention worked –

that is, for those sampled, to be confident that the observed change in outcome is a result

of the treatment rather than a fluke of randomisation. In which case, experimenters are

not worried about sampling uncertainty at all. The settings may be so far removed from

“natural” populations that the question is not whether others’ would react in the same way,

but whether the actual instruments are effective at all.4

On the other hand, experimenters often want to estimate how likely the observed effect

holds across a wider population. This is most often the case in randomised survey experi-

4Note also that sampling uncertainty is not the same as external validity – it is not a claim about how
likely any observed effect is “in the wild”. In the case where a researcher is concerned about whether the
effect would hold given a different sample, the validity of that claim is still only with respect to the identical
experimental conditions as it was originally conducted – visiting a lab or online portal, reading the same
vignettes, exposure to the same rules and so forth.
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ments where participants are sampled from much larger populations like general electorates.

In which case, the more frequent concern about sampling uncertainty is important and should

be embedded in the variance estimation strategy. Crucially, this concern is separate from

the “causal” uncertainty in the parameter estimate.

In summary, experimentalists should choose their variance estimator dependent on the

type(s) of uncertainty they want to account for. Two separate types of uncertainty – causal

and sampling uncertainty – are particularly relevant to experimentalists. They also help

structure how we appreciate extensions to variance estimation in the presence of grouped,

or clustered data. The remainder of this paper focusses on this specific issue. How should

experimentalists select their variance estimator, and justify its use, based on the experi-

mental design? In the next section, I present principled guidance on variance estimation in

experimental contexts where there are group-level features to the data.

2 Group-level structure in experimental data

Motivating examples

Study 1. Consider an observational study that assesses how a specific teaching resource

correlates with student learning outcomes. Researchers collect student-level educational

attainment measures across multiple classrooms, and record whether each classroom is using

the resource or not. Note in this observational context access to the teaching resource is

not controlled by the researcher. To estimate a correlation with students’ performance, the

researchers regress individual students’ educational attainment on this binary indicator:

Yi = β ×RCi
+ εi, (3)

where β is the effect of the teaching resource, Ci is the classroom which individual i belongs,

and Rci is an indicator variable for whether i’s classroom uses the teaching resource or not.

Crucially while data are sampled at the student-level, there are unobserved effects in-
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variant within students of the same classroom but which vary across classroom assignments.

For example, the qualities of individual classroom teachers (their enthusiasm, experience,

teaching style) will be shared across students from the same class, but will vary across stu-

dents in different classrooms. Since these factors will plausibly affect the outcome, but are

unobserved in the data, the residuals of our statistical estimation will exhibit a group-level

structure. More specifically, if characteristics of the specific classrooms play any role in stu-

dents’ educational attainment, then some part of the residual error from the classroom size

regressor will be correlated by individual. That is, we can decompose the residual term such

that εi = εCi
+ γi, where εCi

is the error associated with unobserved effects at the classroom

level, and γi is the random error component centred around 0.5

Study 2. Now consider a different study where researchers randomly assign whether class-

rooms use the teaching resource or not. Researchers again measure the same educational

performance metric at the student level (Yi). Each individual’s exposure to the resource

treatment is determined by their membership of a specific classroom. As in Study 1, there-

fore, this predictor is invariant within classrooms. Unlike in Study 1, however, whether a

classroom has the resource is determined by random assignment. To estimate the effect of

the teaching resource, the researchers estimate a very similar model to that in Study 1:

Yi = β ×DCi
+ εi, (4)

where β is the effect of the treatment, Ci is the classroom to which i belongs, and DCi
is

the randomised treatment assignment of classroom Ci. As in Study 1, the same unobserved

classroom-level effects like teacher quality may separately impact the outcome. So again it

seems reasonable to disaggregate εi into separate classroom-level and random components.

5I shall assume in all the following examples that there are no relevant covariates to control for. This
assumption is unrealistic, but the focus of this paper is on potential bias of the treatment regressor’s variance,
and not in the variance estimates of covariates. Therefore we can ignore these covariates for the sake of
simplicity.
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Study 3. Finally, consider a different experiment where students take part in repeated

rounds of an experimental game. Researchers randomly manipulate a binary feature of

the game (the treatment) each round. Since there are multiple rounds students will, in

expectation, be exposed to both treatment and control conditions. Data is collected at the

individual-round level. Thus researchers estimate the following model:

Yi = β ×Dit + εit, (5)

where i indexes individual students, t indexes rounds of the experiment, Dit is the round-

specific treatment assignment of i and ε is the round-level error.

Let us assume that there are no learning or other order effects at play in this scenario.

Dit is randomised at the individual round-level such that our estimate of the size of β will be

unbiased both within and across individuals. But since we have multiple observations for each

individual, unobserved individual-level characteristics will be invariant across portions of our

dataset. For instance, suppose that the experimental study measures some form of cognitive-

performance like multiplying two numbers together. The treatment involves some additional

distraction during the task. Regardless of the presence of this distraction, it is likely that

some portion of the performance for each individual will be driven by their (unobserved) pre-

treatment cognitive ability. Since this ability is invariant within individuals, and individuals

complete multiple rounds across both treatment conditions, the residuals for each individual

εit will likely be correlated. Again, therefore, our intuition is that the error term of the model

can be decomposed into a group level component (in this case the student) and a random

component.

Despite their different designs, all three studies have very similar data structures as

summarised in Table 2. In each case the data exhibits clear clustering – by classroom in

Studies 1 and 2, and by individual in Study 3. In Studies 1 and 2 note that the group

members are students within classrooms, whereas in Study 3 the units of analysis are repeat

observations taken from the same students. Each study has a single a binary predictor,
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Table 2: Comparison of the data structures for three hypothetical studies.

Study 1 Study 2 Study 3
Observation R Observation D Observation D
Yc1,i=1 1 Yc1,i=1 1 Yi1,t=1 1
Yc1,i=2 1 Yc1,i=2 1 Yi1,t=2 0
Yc2,i=3 0 Yc2,i=3 0 Yi2,t=1 0
Yc2,i=4 0 Yc2,i=4 0 Yi2,t=2 1

... ... ...
YcC ,i=I−1 0 YcC ,i=I−1 0 YiG,t=1 0
YcC ,i=I 0 YcC ,i=I 0 YiG,t=2 1

R is an observational indicator about whether the main predictor is present or not. D is similarly binary
indicator, except it is randomly assigned at the group-level (Study 2) or at the observation level (Study 3).

multiple observations per group, and an expectation that unobserved group-level factors will

impact the outcome.

How should we handle the potential impact of group-level factors on the error term of

our predictor in each study? In terms of observational studies like Study 1, the guidance in

the statistical literature is clear: cluster your standard errors (Angrist and Pischke, 2009).6

Otherwise, your estimates of the uncertainty around your point estimates will be biased.

Should the same logic apply to either of the two experimental studies? On the one

hand, Study 2 and Study 3 both have similar data structures to Study 1 and share the

propensity for group-level influences on the outcome. Unlike Study 1, however, the predictor

is randomised in both Study 2 and Study 3.7 Does the fact that the predictor is randomised

preclude the need to cluster?

Studies 2 and 3, moreover, differ from each other in terms of the level at which treatment

is randomised. In Study 2, treatment is assigned at the group level. All observations within

a group share the same treatment assignment. In Study 3, on the other hand, treatment is

6Indeed, the classroom example is a modification of the motivating example in Angrist and Pischke’s
(2009) textbook example of when cluster-robust estimation is useful.

7Note, in Study 2, the randomisation across classrooms should ensure that features like teacher quality
are balanced across treatment and control, even though observations are drawn at the student-level. While
the parameter estimate will be unbiased, therefore, group-level features will likely impact the error terms as
discussed above, and do so in a way that is correlated by classroom membership.
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randomly assigned at the unit of observation and, consequently, we do not expect treatment

assignment to be correlated within groups. More formally, let ρx denote the relationship

between treatment assignment for observations within groups. ρx is the intraclass correlation

coefficient of treatment assignment. In Study 2, we expect ρx = 1 since treatment assignment

within each group is perfectly correlated. In Study 3, ρx = 0 in expectation. Does this

difference mean that clustering is appropriate in one case but not the other?

Conflicting advice for clustering experimental errors

The literature is not settled on the answer to these questions (e.g. see Blattman, 2015),

and specific and detailed guidance for experimentalists remains limited. Indeed, two recent

working papers on the correct application of clustered variance estimators come to seemingly

conflicting conclusions about contexts with randomised predictors (Cameron and Miller,

2015; Abadie et al., 2017). Whereas Cameron and Miller (2015) argue that randomisation

typically precludes the need to cluster one’s variance estimates, Abadie et al. (2017) suggest

clustering is necessary in some, but not all, experimental protocols.8

These arguments are seemingly incompatible because they implicitly consider different

types of design. Neither paper is solely focussed on contexts with randomised predictors, and

as a result their prescriptions do not adequately generalise to the diversity of experimental

designs common across the social sciences. In the remainder of this section I highlight the

key insights from this research to provide a comprehensive guide to variance estimation in

experimental contexts.

Cameron and Miller (2015) argue that ‘if we think that either the regressors or the er-

rors are likely to be uncorrelated within a potential group, then there is no need to cluster

within that group’ (p.17, emphasis added). It is unclear, however, what makes clustering

unnecessary from their discussion. On the one hand, this could be interpreted as suggesting

8Another tempting solution is to check whether clustering makes a difference and report whichever error
is larger. As discussed in the introduction, however, this conservative approach is misguided to the extent it
conflates hypothesis testing with variance estimation, and misconstrues the fundamental statistical properties
of the variance estimate.
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that when a regressor is randomised there will be no difference in cluster-robust and conven-

tional variance estimates (and therefore clustering is not needed). This claim can be tested

using Monte Carlo simulations. In Section 3 I demonstrate that in fact randomisation does

not preclude differences in variance estimates. Therefore, this strategy does not give us a

principled reason to choose one variance estimator over another.

On the other hand, a more robust interpretation is that one should not cluster because

in expectation the correlation will be zero in randomised contexts. In contexts where treat-

ment is randomised at the individual-level, any non-zero correlation is a fluke of a random

assignment procedure rather than bias caused by group-level clustering into treatment or

control. This argument is more promising – it does provide a principled approach to vari-

ance estimation – but only holds if treatment is uncorrelated with groups in expectation.

For instance, in Study 3 treatment is randomised at the observation-level, so not only is the

point estimate itself unconfounded but in expectation the within-group correlation of treat-

ment (ρx) should be zero. If, as in Study 2, treatment is randomly assigned across groups

but is correlated within groups, then by definition ρx is non-zero. Therefore, cluster-robust

and conventional estimators may differ. Which estimator is correct in this case, and why?

And what if, aside from randomisation, researchers have sampling-related concerns about

the groups in the data?

Design-based approach to clustering

Abadie et al. (2017) provide a general solution that incorporates similar intuitions to Cameron

and Miller (2015) but which can be extended to clustered treatment assignment designs

common in experimental research. Their approach builds on the broader theory behind ex-

perimental uncertainty discussed in Section 1. When choosing the correct variance estimator

in the presence of clustered data and randomisation, experimentalists should consider both

how clustering affects the sampling and treatment assignment of observations respectively. In

short, clustering is appropriate, they argue, if either the assignment of treatment or sampling
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are conducted at the group-level.

Group-level treatment assignment. Consider first the case of a completely randomised

experiment like Study 3. The estimated variance of the effect is, by definition, unrelated

to the treatment. Even if there are group-correlated errors, the intergroup correlation of

treatment assignment is zero in expectation and therefore we should not expect any bias in

the variance estimate (under the causal uncertainty interpretation).9

With a single random treatment assignment schedule, however, there is a non-zero prob-

ability that ρx > 0 even with completely randomised treatment. For instance, in Study 3

any given subject may get treated more often than not (or vice versa) precisely because

assignment is random.10 The observed correlations in treatment at the group-level are a

quirk of an (as-if) random procedure conducted at the observation-level. They do not reflect

inherent correlations in treatment assignment within groups. If we were to repeat treatment

assignment multiple times, the correlations would average to zero. It is therefore not ap-

propriate to cluster on the basis of these correlations because they exist purely by chance.11

Note this claim is made without reference to the data. We can know whether ρx = 0 in

expectation purely from the design of the treatment assignment.

When treatment is assigned at the group-level, however, error-correlations due to group-

level unobserved factors will not be cancelled out (in expectation) by the randomisation of

treatment across groups. In this context, the conventional variance estimator is inappro-

priate. Suppose you have two pre-existing groups – one is assigned to treatment and one

9This logic is very similar to what Cameron and Miller (2015) appear to imply. The difference is that
Abadie et al. (2017) make clear that the rationale behind clustering is not made with reference to any
observed treatment correlation in the data.

10Consider flipping a fair coin ten times. In expectation we should get five heads and five tails but, inherent
to the randomness of the procedure, we may plausibly get six, seven, or even eight heads from the ten coin
flips. Randomness does not, in and of itself, guarantee balance empirically. Random procedures are random
precisely because the assignment to one value or another is determined by some probabilistic mechanism
where the functional form is both known and independent of all other variables. See Titiunik (2020) for a
good discussion on the various definitions of ‘random’.

11In a similar sense, researchers would not re-run an experiment just because a certain individual received
the treatment condition in six out of ten rounds (when the expected proportion would be five out of ten
rounds).
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to control. Suppose further that some unobserved feature uniformly affects the outcomes of

individuals in the treatment group. Since all observations in that group receive the same

treatment assignment, there is no way for the estimation strategy to disentangle this group-

level influence on the outcome (despite treatment assignment over the groups being random).

Our errors should therefore account for these deliberate error correlations, and we do so by

using the clustered variance estimator.

Group-correlated random treatment assignment shares features with observational stud-

ies where clustering is used to correct variance estimates for unobserved correlations between

groups, predictors and outcomes. An unobserved contextual variable may influence outcomes

independent of the effect of the main predictor. If groups of observations share this contextual

feature as well as values for the main predictor, then conventional estimates of variance will

not account for these group-level error correlations. In a similar way, if experimental treat-

ments are correlated within groups, and groups share some background unobserved features

that impact the outcome, then we need to correct for that in our estimation of the variance.

This occurs in the hypothetical Study 2 because treatment is constant within classrooms

and students within classes will share unobserved features that influence the residuals of the

statistical model. In short, one should only cluster one’s errors on the basis of treatment

assignment if treatment assignment is correlated within groups.

Group-level sampling. Researchers making claims about a broader population should

ensure variance estimates account for the absence of those units not sampled in their data.

In the case of clustered data, the variance estimator should take into account whether the

number of observed groups is part of a wider population of groups. Imagine a completely

randomised experiment that is conducted on two individuals. They complete a set number of

rounds, the treatment is randomised at the round-level, and the experiment is well-powered.

One of these individuals, however, refuses to engage in the experiment and no matter what

treatment condition they receive they always report the same outcome. This experiment
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will have two likely features. First, the point-estimate of the treatment is likely to be close

to zero. But moreover, since the number of observations per individual is large, we expect

the conventional standard errors to be quite narrow.

Intuitively these errors do not reflect the fact that an obstinate subject is skewing the

results. At first glance, the narrow confidence intervals suggest the point-estimate is very

precise. The problem in this case is that the researcher wants to make a claim about the

experimental effect on a wider population of individuals but by chance one of the subjects

is seemingly skewing not only the point-estimate but also the uncertainty of that estimate.

By swapping the obstinate individual for another well-behaved subject, we might expect the

treatment effect to change. Therefore, the uncertainty around the original estimate should

account for this variability.

In such situations, clustering is appropriate since it captures the fact that the variance

estimate is contingent on which groups were sampled from a wider population of groups.12

In the case of the obstinate subject, we would expect this to widen the confidence interval

around the low treatment effect estimate, to capture the fact that the average treatment

effect in the population will likely be higher than that recovered in this specific sample of

individuals. In other words, when we sample at the group-level (selecting some groups but

not others), our variance estimate should be adjusted to account for the fact that not all

groups are included in the data. Note that in this case we cluster regardless of how treatment

is assigned, to capture sampling rather than causal uncertainty related to which groups are

observed. Again, however, once the sampling strategy is determined, whether the researcher

should cluster standard errors is determined without reference to the observed data itself.

In addition to sampling being conducted at the group-level, two additional features must

hold for the cluster-robust estimator to be unbiased. First, the number of clusters in the

data needs to be reasonably large since the cluster-robust estimator developed by Liang and

Zeger (LZ-estimator; 1986) operates asymptotically (Cameron and Miller, 2015).13 Second,

12Where repeat observations are taken, individuals can constitute groups (as in Study 3).
13The LZ-estimator can be expressed as V [β] = (X ′X)B̂C(X ′X) where B̂C =

∑G
g=1X

′
gûgû

′
gXg and
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the number of groups in the data must be a small proportion of the groups in the population

or, equivalently, the number of groups in the population must be assumed to tend to infinity.

If they are not, then cluster robust variance estimates will be conservatively biased against

the true variance (Cameron and Miller, 2015; Abadie et al., 2017).

This “vanishing proportion” feature of the typical cluster-robust variance estimator has

substantial implications for experimental researchers. When designing their analyses, exper-

imenters must decide whether they wish to make an inference about a population beyond

the groups included in the data. There are many cases where this will likely be the case

– repeat-round games using a sample of individuals are typically used to infer the size of

an effect on some wider human population (be it geographical or socio-economic). If gener-

alisability is desired, then the requirement that the number of groups in the data is small

relative to the population of groups must hold.

If the number of groups is not a vanishingly small proportion of possible groups, or

researchers simply want to estimate the uncertainty of causal effects with respect to the

specific sample, then cluster-robust estimation should not be used. In these cases, the data

does not contain a vanishingly small sample of the clusters in the population – instead it

contains the “population” of clusters itself. Consequently, the data’s composition would

violate the asymptotic assumptions needed for the cluster-robust estimator to be unbiased.

Summary. Table 3 distils the design-based approach and provides a simple reference for

experimental researchers to use. If either treatment is assigned at the group level or the

groups in the data are a small sample of groups from a larger population then clustering is

appropriate (Abadie et al., 2017). If neither hold, then one should not use cluster-robust

variance estimation. Two implications of this section are worth restating. First, researchers

can determine the appropriateness of cluster-robust variance estimation before collecting

ûg = y −Xgβ̂ (Cameron and Miller, 2015, p.8). Hence it is clear that the estimator operates by averaging
over the groups, and will therefore perform better when the number of groups in the data is large. The
optimal number of clusters will vary dependent on the features of the clusters themselves (Carter, Schnepel
and Steigerwald, 2017). Corrections to the cluster-robust estimator can be made to account for small absolute
numbers of clusters in the sample.
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Table 3: Should researchers cluster based on the design-based approach to variance estima-
tion?

Sampled groups
small proportion
of all groups

Sampled groups
large

proportion/all
potential groups

Treatment
assignment at
group-level

Cluster errors Cluster errors

Treatment
assignment at

observation-level

Cluster errors (if
making a

population-level
claim)

Do not cluster
errors

data. Both the assignment and sampling strategies are known prior to data collection.

Second, researchers should be sensitive to whether their analysis aims to make an inference

about a population beyond their sample, and if so whether there are sufficiently many groups

both in their sample and the wider population for the cluster-robust estimator to be unbiased.

In all cases, researchers should make explicit the type(s) of uncertainty they quantify in their

analysis.

What if experimenters choose the wrong estimation strategy? How big a difference does

the choice of variance estimator make in practice, and therefore how biased can the standard

errors be? In the next two sections I present simulation and replication evidence to show

that the difference in variance estimation can be very substantial in experimental contexts.

In turn, these results demonstrate the substantive importance of following the design-based

approach outlined above.

3 Simulation evidence in favour of the design-based

approach

This section expands upon the general problem of variance estimation in statistical terms.

I focus in particular on the treatment assignment aspect of variance estimation. Sampling-
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related concerns are ubiquitous and covered in depth elsewhere (e.g. Huber, 1967; White,

1980; Liang and Zeger, 1986). Using Monte Carlo simulations, I demonstrate that even under

observation-level randomisation it is probable that conventional and cluster-robust variance

estimates will diverge substantially.

Conventional estimation of variance

Suppose some treatment D is linearly related to an outcome Y. The true model is specified

as follows,

Y = Dβ + ε, (6)

where D is a n×k matrix, β is a k×1 vector, and ε is the randomly distributed residual.

For the simplest experimental set up we consider, D can be considered a n × 1 matrix of

treatment assignments, and β the corresponding effect of treatment on the outcome.

With a finite sample of observations, the optimisation problem is finding β̂ such that

the squared residual (ε′ε) is minimised. In Appendix A1, I present the full derivation for

completeness. Here it is sufficient to state that our estimate of variance var(β̂) is the squared

difference between the true average causal effect (β) and our best estimate (β̂), such that:

V ar(β̂) = E[(β̂ − β)(β̂ − β)′], (7)

which is equivalent to:

V ar(β̂) = (D′D)−1E[εε′]D(D′D)−1. (8)

The variance of β̂ in Equation 17 is itself an estimate–in exactly the same sense that β̂

is an estimate of the true β.14 This feature is often neglected. Given a finite sample, we

do not know the true variance of the treatment effect (and covariates). Instead, we observe

a subset of the population, note the deviations from the predicted value (given the linear

14The Gauss-Markov theorem, which rests in part on the above assumptions, proves that β̂ is the best
linear estimator of β.
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model above), and from this infer something about the true variance in the population. As

such, the standard errors of the coefficients are themselves an estimate, and not a deductive

by-product, of regression models.

SinceX is known, from Equation 17 our estimate of variance reduces to E[εε′], which is the

variance-covariance matrix (Ω). Under conventional estimation, we assume that Ω = σ2× I.

This specification is a direct result of the standard Gauss-Markov (GM) assumptions. First,

for every value of D, the conditional expectation E[εε′|D] is assumed to be constant (i.e. vari-

ance is homoskedastic). Therefore, the diagonal elements of the variance-covariance matrix

are equal to some constant σ2. Second, since we also assume error terms are uncorrelated,

there is no covariance between any two distinct residuals (i.e. off-diagonal elements of the

covariance matrix are zero). Hence the variance-covariance matrix is equivalent to multiply-

ing the n × n identity matrix by σ2. Imposing these restrictions on the structure of Ω, we

only need to recover an estimate of σ2, using the observed error in our sample: σ̂2 = e′e
n−k .

Any estimate of the true variance of β̂ is entirely dependent on the simplifying assump-

tions we make about the nature of the variance-covariance matrix Ω. In particular, if either

of the two GM assumptions are violated then our estimate of the variance of β̂ will be incor-

rect (by definition). This latter feature matters hugely for statistical inference. Consider the

parallel concern about the point-estimates β̂. When we violate the GM assumptions – if for

instance observations are not independent – our estimated coefficients are no longer unbiased

linear estimators of the true β. In which case, our statistical inferences using conventional

estimation are invalid. The same logic applies to variance estimation. If we do not satisfy

the GM assumptions, our estimation of the variance of β̂ are incorrect, and therefore any

statistical inference about β is harmed because we have incorrectly estimated its variance.

Biased standard errors under the assumption of clustered data

Clustering in the data is a specific violation of the GM assumptions, whereby the covariance

between off-diagonal elements of Ω are non-zero. This is true if there is group structure to
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residuals, such that cov(εi, εj) > 0 if gi = gj, else cov(εi, εj) = 0. In which case, Ω 6= σ2I

(since multiplying the identity matrix means all off-diagonal elements are equal to zero) and

so σ2 is not an unbiased estimate of β̂’s variance.

When Ω exhibits clustering, we cannot reduce E[εε′] to an estimation problem over σ2

alone. Instead, assuming homoskedastic residuals, the correct specification of the variance

of β is

v̂ar(β̂) = σ2(D′D)−1D′V D(D′D)−1, (9)

where V is the block-diagonal matrix of inter-group error correlations ρ (Moulton, 1986).

In other words, we have substituted the identity matrix, which imposes strict conditions on

the values of the variance-covariance matrix, with a matrix of the same dimension as I but

which is capable of capturing the extent to which residuals may covary when observations

belong to the same group.

V itself is unobservable since we cannot observe the entire population and therefore do

not know the actual covariation between groups. Valid inference about coefficients’ variance

when data has group-level structures requires an estimate of both σ2 and V . Incorrectly

using the naive estimator of variance, when residuals exhibit within-group covariance, leads

to estimation bias (Moulton, 1986; Liang and Zeger, 1986). The extent to which the con-

ventional variance estimator is biased (expressed as the ratio between the true and naive

variance estimate of β̂) can be expressed as,

Biasvar(β̂) = 1 + [(var(mi)/m̄) + m̄− 1]ρxρ, (10)

where ρx is the intraclass correlation coefficient (ICC) of xgi. The extent to which variance

is inflated or deflated by is known as the “Moulton Factor” (Angrist and Pischke, 2009) after

Brent Moulton who first outlined this relationship (Moulton, 1986).

As either the ICC or correlation of errors within groups increase (decrease), the standard
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error is inflated (deflated). Moreover, since both ρ and ρx have a possible range [−1, 1]

(in Moulton’s specification) it is possible the conventional estimator can be both overly-

conservative or not conservative enough of the true variance of the predictor.15 As the mean

group size m̄ decreases, or observations become more unevenly distributed across groups,

then this would also inflate the conventional estimate of the predictor’s variance.16

Clustering under complete randomised assignment

The Moulton Factor captures the extent to which the conventional estimator is biased if, in

fact, one should cluster standard errors in a given design. More broadly the Moulton Factor

is a scalar that reflects the extent to which a variance estimate changes as one switches

between using conventional and clustered variance estimators. Usefully, therefore, we can

use the Moulton Factor to understand whether and why clustering alters variance estimation

under the assumption of randomisation.

Let g ∈ G index groups of observations that each contain j observations (for the sake of

simplicity).17 Dig is the treatment assignment for the ith observation within group g and yig

denotes the corresponding observed outcome. We estimate the model y∗ig = β0 + β̂1Dig+ εig

and focus on the potential bias of var(β̂1) which is given by Equation 10. Under these

assumptions, the Moulton factor collapses to,

Biasvar(β̂1) = 1 + [j − 1]ρxρ. (11)

15This range is true of the ICC estimator as detailed in Moulton (1986) (see Griffin and Gonzalez, 1995).
More recent ICC specifications have a strictly positive range: given a random effects model Yij = µ+αj +εij

for individuals i and groups j, the ICC can be expressed as
σ2
α

σ2
α+σ2

ε
, i.e. the proportion of variance accounted

for by the group over the total variance (Rodŕıguez and Elo, 2003). But note that even under the assumption
that ρx > 0, if ρ < 0 then ρ · ρx < 0.

16In a non-experimental setting, it is clear how a group-level regressor repeated in an individual-level
dataset skews standard errors. Where the regressor is invariant within groups but variant across groups,
ρx = 1 and so even with some small error-correlation within groups, the conventional estimator will be
biased.

17In fact, what follows below is not contingent on equal group sizes. Unequal group sizes affect the size
of the variance bias factor, but not the two correlation terms ρx and ρ. To the extent that one’s dataset
may contain missing data or uneven group sizes, the actual impact of group-related errors is mediated by
the square-bracketed term in Equation 10, instead of that in Equation 11.
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Hence, differences in the estimated variance rely on both the ICC and correlation of

within-group residuals being 6= 0 and, trivially, that the number of observations per group

must be > 1. Less trivially, as the number of observations per group increases, the potential

bias of the conventional variance estimator increases (assuming some non-zero ρxρ). Since

both ρ and ρx must be non-zero for the estimated variance to be biased, I consider each

inflation term in turn.

Correlated errors. Despite randomisation, it is likely that errors will be correlated within

groups. Observation-level assignment will randomise treatment across observations within

groups but that does not mean that inherent characteristics of that group are also randomised

across observations. Suppose we run a repeat-observation experiment on a set of individuals

with a binary treatment and some outcome like giving in a dictator game. The treatment

may affect one’s willingness to distribute, but each individual will have some unobserved

qualities that affect their latent attitudes towards giving – altruistic preferences for example.

These features do not affect the estimate of the treatment coefficient, but they may affect the

estimate of the coefficient’s variance. The same logic applies in contexts where randomisation

occurs at the group-level. Unobserved features of the group will be invariant across these

observations (and invariant with the treatment indicator too).

Since unobserved qualities are constant across rounds, irrelevant of treatment, there may

be some constant unobserved effect of each group’s profile. In which case, ρ 6= 0.

Intraclass correlation of the treatment regressor. ρ 6= 0 alone is insufficient to lead to

a difference between conventional and cluster-robust variance estimates. The total inflation

factor is a product of both the error correlation term and the intraclass correlation of the

treatment regressor (i.e. ρ×ρx). If ρx = 0, then irrespective of any correlation in error terms

across groups, there will be no effect on the estimated variance of the treatment effect. This

feature appears to motivate the claim in Cameron and Miller (2015) that randomisation

precludes the need for clustered variance estimation.
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In a fully randomised experimental context the expectation is that ρx = 0 since treatment

is randomised within groups. Since treatment is randomly assigned at the observation level,

P (Dig) ⊥ P (Dig′),∀g 6= g
′
. Hence the ICC of the treatment regressor will equal 0 in

expectation. That is ρx = 0 when P (Dig = z) = P (Dig = z′),∀z, z′ ∈ Z since the value

of the regressor is not contingent on any feature of the group g, and so the proportion of

variance explained by the grouping variable will be equal to zero.

In short, therefore, our estimates of randomised treatment effects should not be affected

by repeat observations so long as the treatment is randomised within and across groups.

Even if there is some group-correlated unobserved features in the data that are related to

the outcome, when ρx = 0 the scaling factor collapses to 1 and the clustered and non-clustered

errors are identical.

Despite this expectation, given the stochastic nature of random assignment, any par-

ticular randomisation may result in |ρx| > 0. Even a small observed ρx has the potential

to bias one’s variance estimate if either the group size or within-group error correlation is

sufficiently large. In fact, the probability of observing a non-zero ρx is dependent on the

number of rounds. When j is small the probability of achieving truly randomised allocations

of treatments decreases and thus the likelihood that ρx 6= 0 increases.18

Under randomisation for a binary treatment,

lim
j→∞

P (Dig = x) = 0.5, x ∈ {0, 1}.

But when the number of observations per individual j is relatively small, the within-

individual proportion of treated and non-treated rounds may not be perfectly balanced. In

a two-round experiment, for example, the probability of a completely imbalanced treatment

profile is the same as a completely balanced profile: P (D1 = D2) = P (D1 6= D2) = 0.5. And

across the full sample, even if P (Dij = 1) = 0.5, there may be sufficient imbalance within

18Though this will be somewhat offset by reducing the potential bias of the standard variance estimator
relative to larger group sizes (see Equation 11).
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Figure 1: Distribution of Monte Carlo simulated intra-class correlations of the treatment
regressor (ρx) with fully randomised treatment assignment over units. The coloured lines
correspond to different numbers of observations per group j. Each simulation randomly
assigns a binary treatment to i × j units, where i = 500. The distribution of values for
each j ∈ {2, 5, 10, 15, 20} is obtained by repeating the randomisation procedure 1000 times,
calculating the ICC separately each iteration.

individuals’ own set of assignments such that ρx 6= 0.

Figure 1 demonstrates this result using Monte Carlo simulations of ρx where treatment

assignment is completely randomly assigned, for varying numbers of rounds per individual.

The expected value across all round sizes is equal to zero, but with fewer rounds, there is

clear potential for the observed ICC value of the regressor to be non-zero. At the lower bound

of group sizes (j = 2) the ICC distribution is notably shallow but as group size increases to

five, a 95 percent interval covers [-0.03,0.03].

Given the results in Figure 1, imbalanced treatment assignment within individuals as a

result of random assignment will not always preclude within-group correlation of treatment.

Thus, while the procedure of binary randomisation may itself be a stochastic process, there is
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no guarantee that the resultant treatment assignments within groups approximates a random

distribution, such that there is some potential for ρx 6= 0.

In the case of group-correlated treatment assignment, ρx 6= 0 by definition. Therefore

any group-level error structure as a result of unobserved features shared across members of

a group will alter the estimated variance as determined by Equation 10.

Total change in variance. Non-zero values for both ρ and ρx are possible regardless of

the level at which treatment is assigned. Multiple observations from the same group will

likely mean errors are correlated within groups. Even when randomisation is conducted

at the observation-level, this does not preclude non-zero within-group correlations for any

given random treatment assignment. Clustering will therefore likely make a difference to

one’s estimate of the regressor’s standard error. But by how much?

In Equation 11 j features as both an inflater of the entire scaling factor, but also deflates

the variance of ρx’s random distribution (see Figure 1). When these two forces are combined,

even though an increase in the number of rounds lowers the probability of a non-zero ρx,

this is undone by the larger [j− 1] inflationary term that acts separately to ρx in the scaling

formula. Figure 2 displays the results of multiplying the computed ICCs in Figure 1 by the

corresponding [j− 1]. As a result, even at relatively large number of rounds per subject, the

variance of the random ICC distribution around the mean of 0 is considerable.

Second, given ρ has a potential range [−1, 1], the total distortion of the standard error

is moderated by the extent of the error correlation. At its maximum ρ = 1, errors are

entirely correlated within individuals, suggesting that all residual variance in the outcome

is explained by invariant features of the subjects themselves. As |ρ| → 0, this mediates

the entire scaling factor, and thus the potential divergence from the conventional estimate

decreases.

The results in this section demonstrate that conventional and cluster-robust variance

estimates can vary substantially. These simulations also offer direct evidence against the ar-
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Figure 2: Distribution of the ICC estimates in Figure 1 multiplied by [j − 1]. The effect of
[j-1] is to offset any deflation in the variance of the ICC distribution as round size increases.
Coloured lines again indicate different round sizes, holding fixed the number of individuals.

gument that randomisation precludes any difference between cluster-robust and conventional

variance estimates. We are likely to observe differences in estimated standard errors between

conventional and cluster-robust estimation, as a result of stochastic variation of treatment

assignment within groups. These differences can be substantial, even for relatively simple

experimental scenarios like the one explored in this section. Researchers should therefore

pay careful attention to ensure they use the correct variance estimator, dependent on exper-

imental design, as discussed in Section 2.

4 Review of Experimental Papers

To illustrate the importance of this paper’s argument in substantive terms, this section

presents a review of all papers published in the Journal of Experimental Political Science
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(JEPS ) between 2017 and 2019 (n = 49). JEPS publishes short (4000 word) studies using

experimental methods, making it convenient to analyse the variance estimation methods

used across a wide corpus of research involving randomisation.19

In total, all but two of the articles published between 2017 and 2019 in JEPS contain

original experimental studies. For each article, I record the research domain, the variance

estimation strategy, and any justification given for the method of variance estimation. I also

note whether the articles satisfy either of the two clustering criteria given by Abadie et al.

(2017) and the analysis in this paper. Table A1 in the Appendix presents a comprehensive

list of all articles reviewed in this exercise.

Table 4 reports all articles that reported using clustered standard errors. In almost all

cases, authors are correct to use the cluster-robust estimator. For instance, Zhang (2018)

cluster their results by experimental session since treatment is assigned at the experimental

session level (all individuals in one session receive the same treatment). A majority of the

papers in Table 4 cluster on the basis of cluster-correlated treatments.

Notably, authors rarely correctly justify their use of these procedures (if they justify them

at all). DeScioli and Kimbrough (2019), for example, note that “to control for repeated mea-

sures and group effects, we include random effects for participant, and we cluster standard

errors at the group level.” While random effects control for between subject differences,

the repeated measures and group effects in this design alone are insufficient justification

for clustering. Clustering makes sense both because the treatment assignment is correlated

by group and because the individuals are plausibly drawn from a much larger population.

In Demel et al. (2019), the authors note that “standard errors are adjusted parametrically

to account for clustering within decision-making participants,” which again is insufficient

reasons to use the cluster-robust estimator without noting either the clustered sampling or

assignment (both of which the authors’ design includes).

19JEPS also states explicitly on its website its willingness to consider null results. Therefore, there is
little a priori reason to suspect researchers would systematically modify their variance estimation in order
to inflate the chance of recovering a statistically significant coefficient.
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Two papers use cluster-robust variance estimation when it appears they should not. In

Green, Davenport and Hanson (2019) the authors explore the long-term consequences of the

Vietnam war draft on political behaviour. They leverage the natural randomisation of draft

position being the result of lottery draws of birthdates within the year. The authors then

cluster their standard errors by year since three separate random draws occurred between

1969 and 1971.20 However, since the authors sample from across all draft lottery years,

and the probability of assignment to “treatment” is equal between drafts, then neither the

sampling nor treatment requirements of the design-based approach are satisfied.21

Similarly, in Enos and Celaya (2018), five separate experimental sessions are run on

different subjects. In the pooled results reported in their Table 1, the results are clustered by

session. Randomisation occurs within each experimental session. Moreover, it is unclear why

or whether experimental sessions should be treated as sampling-based strategy. In the same

sense that the draft lotteries constitute a population of potential clusters, the experimental

sessions are the population of all sessions run. The potential “super-population” of all

realised and unrealised experimental sessions seems, on the face of it, an unsatisfactory

justification for clustering. The researchers did not, after all, sample from this set of potential

groups prior to assigning treatment.

Among the set of papers that did not use cluster-robust variance estimation, four papers

have designs where clustering would have been appropriate, and in two further studies a

straightforward judgement is not possible. These papers are reported in Table 5.

Of the first four papers, half include cases where clusters were sampled from a wider

population of clusters (Morton and Ou, 2019; Bassi, 2019; Barber et al., 2017). Morton

and Ou (2019) note that clustering is appropriate for their design, on the basis of clustered

sampling, but that privacy concerns precluded individuals from being identified in the data.

Barber et al. (2017) similarly should cluster on the basis of clustered sampling. In this study,

20In an abstract sense, these draws can be though of as experimental sessions.
21The treatment is operationalised as having either a low or high draft number. Since lottery draws

were exhaustive (all days in the year were drawn), the probability of assignment to a low draft number is
approximately 0.5 in each year the lottery was conducted.
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Table 5: JEPS articles (2017-19) with group-level structure that do not using cluster robust
estimation

Authors Description Sample
Clustered
sampling?

Clustered
treat-
ment?

Should
cluster?

Morton and
Ou (2019)

Effect of public
voting on prosocial

behaviour
Students Yes - Yes

Bassi (2019)
Effect of weather on

vote choice

Students &
university
employees

Yes Yes Yes

Lorenz,
Paetzel and
Tepe (2017)

Effect of framing
taxes on

redistribution
preferences

Not stated - Yes Yes

Jeon,
Johnson and

Robinson
(2017)

Effect of ethnic
diversity on social

sanctioning

Two ethnic
groups

- Yes Yes

Barber et al.
(2017)

Effect of status quo
bias in ballot
wording on

minority rights

Mturk Yes - Yes

Rogers
(2017)

Effect of risk
elicitation on

charitable giving
Students Yes - Maybe

each subject considers multiple minority protections and is asked their opinion about the

status quo. The researchers randomly vary whether a given minority right is presented as the

status quo. Their analysis pools individuals’ choices across the different minority protections.

Since the unit of analysis is at the choice-level and individual subjects are plausibly a subset

of a larger population clustering would have been appropriate.

The other two papers include treatments that are correlated at the cluster-level (Lorenz,

Paetzel and Tepe, 2017; Jeon, Johnson and Robinson, 2017). In Lorenz, Paetzel and Tepe

(2017), the authors conduct a multi-round group experiment in which participants decide on

levels of redistribution. Two features are completely randomised per round: the endowment

one receives, and the group to which you are assigned. On this basis, there is no clustered
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treatment assignment. However, the experimenters are interested in how framing redistribu-

tive choices affects individuals’ choices. They therefore vary whether participants are told

that the game is about taxation or a minimum income, and this framing occurs at the

session-level. Individuals are assigned to only one session. Therefore, there are session-level

groups where treatment is assigned. Thus, in this analysis, cluster-robust variance estima-

tion is appropriate. Session-level clustering issues occur in Jeon, Johnson and Robinson

(2017) study of ethnic diversity and social sanctioning. Individuals from two ethnic groups

on the border of Kenya and Tanzania play a modified dictator game where a third-player can

punish inequitable distributions by the dictator. The experimenters randomise the ethnicity

of the different roles, leading to four separate treatment arms. As they note, when the ethnic

composition of the session is balanced the four treatments are equally likely. But the com-

position of ethnicities within each session varies substantially (one session had a 71%-29%

split). Since different ethnic compositions of sessions will affect treatment assignment prob-

abilities, there is essentially clustered treatment assignment. The authors should therefore

cluster at the session-level.22

Two studies proved more difficult to categorise. Rogers (2017) tests whether there are

differences in risk elicitation experiments when individuals’ earnings are given as charitable

donations instead of direct payments to the participant. They use two separate risk elicitation

experiments to test for these effects. Some, but not all, subjects play one of these games –

the Bomb Risk Elicitation Task (BRET; Crosetto and Filippin, 2013) – twice. Therefore,

in the analysis of this game there is a mixture of once- and twice-observed subjects. Later

analyses focus just on those who completed BRET twice. The treatment over whether money

is earned versus donated is orthogonal to assignment to the 2-round BRET game. Therefore

there is no clustered treatment assignment in this experiment. However, since individuals are

22In this case the treatment probabilities are, in expectation, equal. To the extent this is a pre-data,
design-related issue is debatable. If the randomisation procedure itself had produced imbalances purely
by chance then clustering wouldn’t be necessary. But since participation by members of ethnic groups is
non-random, and the probabilities vary between sessions, it does seem pertinent to apply cluster-robust
estimation.
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a smaller sample of a large population and there are multiple rounds (for 40 participants)

there is a cluster-based sampling component to the design. How one should handle this

situation, given that the full analysis contains both single- and double-observations is not

clear. One pragmatic solution would be to run the analyses entirely separately for the two

groups, and cluster variance estimates for those observed twice in the BRET game.

Bassi (2019) explores the effect of weather on vote choice between candidates who are

identical except for their “risk”. Participants are randomly assigned to sessions held on

days that had the largest difference in predicted precipitation, and complete ten rounds each

of positively and negatively framed choices.23 The payoff to choosing the risky candidate

is sequentially altered over rounds such that rational voters should switch to voting for

the non-risky option midway through each set of ten rounds. Bassi checks differences in

preferences between positive and negative framing descriptively by comparing round-level

proportions visually. To assess the statistical significance, however, Bassi sums the number

of choices for the non-risky candidate per subject and conducts a Welch difference-in-means

test. Similarly, to inspect the effect of weather, Bassi compares the total number of risky

choices across all 20 rounds and compares again compares mean differences between good

and bad weather.

This estimation strategy – summarising behaviour at the individual level – precludes

clustering. However, it is not clear that this strategy is optimal. Some subjects may exhibit

inconsistent behaviour, switching between candidates more than once. Rather than simply

averaging away these issues, why not model the measurement error explicitly within the

estimation strategy? A more robust strategy is to pool observations at the choice level, and

model whether the risk-free incumbent is chosen on the basis of the difference in expected

payoff, framing, and weather. In this proposed test, since the weather is invariant at the

session-level cluster-robust variance estimation is appropriate on the basis of clustered treat-

ment assignment. Bassi (2019) also implicitly draws individuals from a wider population,

23This framing is with respect to the earnings of a comparison country – either lower (positive) or higher
(negative) than the expected payoff in the experiment.
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and therefore clustering would similarly be appropriate on the basis of clustered sampling.

Replications

How does the reported variance change, and thus how are the results affected, when we

correct the variance estimator used in the papers reported above? I re-estimate the two

incorrectly clustered papers in Table 4 and provide revised analysis of the experimental

results in Bassi (2019) from Table 5 using a pooled choice-level model.24

For Green, Davenport and Hanson (2019) and Enos and Celaya (2018), I compare an

exact replication of their main results with the same estimation without using cluster-robust

standard errors. Since Bassi (2019) does not pool results in the study itself, I construct a

linear probability model for each of the four alternative weather measures used in the study.26

I then compare the standard errors of the weather terms based on whether cluster-robust or

conventional variance estimation is used.

Table 6 reports the results of this exercise. Each row is a separate model, and β refers to

the main treatment coefficient. Overwhelmingly, the results show that correcting the variance

estimation procedure increases the standard error of the treatment estimates – sometimes by

a considerable amount. In both Green, Davenport and Hanson (2019) and Enos and Celaya

(2018), conventional standard errors are larger than the original clustered standard errors.

In neither paper does this change the substantive results,27 but the percentage increase in

the standard error is often over 10 percent and in the case of Enos and Celaya (2018) the

standard error is almost doubled.

In Bassi (2019), the change in standard errors are even more stark. To be clear, the

2425 Replication files are also available for Morton and Ou (2019) but, as noted previously, without subject
identifiers it is not possible to compare clustered to non-clustered results.

26Model Specification:

P (Vote for Incumbent)ij = α+ β1Difference in Payoffij + β2Framingiij + β3Weatherj + εij ,

where i indexes individuals and j experimental sessions.
27Indeed Green, Davenport and Hanson (2019) find null results for all estimations in their study. I focus

on the partisanship measures, but the full paper considers other types of long-term effects too.
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Table 6: Replication of JEPS articles with incorrect variance estimates

Coef. N β SE SECluster ∆SE ∆SE (%)

Bassi (2019)

Objective Weather 3320 -0.08 0.013*** 0.033* +0.02 +152.496
Subjective Weather 2660 -0.09 0.014*** 0.032** +0.017 +122.518
Absolute Rainfall 3320 0.06 0.013*** 0.029 +0.016 +127.572
Relative Rainfall 3320 0.07 0.016*** 0.025** +0.009 +58.466

Enos and Celaya (2018): Original model clustered

Black 1081 -0.12 0.032*** 0.024*** +0.008 +34.014
White 1081 0.10 0.031** 0.016*** +0.016 +98.772

Green, Davenport, and Hanson (2019): Original model clustered

Vote ’12: Obama 899 0.82 3.339 2.915 +0.424 +14.5
Primary ’16: Any Dem 648 -0.66 3.932 3.964 –0.032 –0.8
Obama Approval 898 -0.42 3.313 2.87 +0.443 +15.4
Party ID: Democrat 897 -3.82 3.221 3.032 +0.189 +6.2
Liberal / Very Liberal 912 -0.68 2.976 2.905 +0.071 +2.4
Don’t Support Tea Party 907 1.03 2.525 2.232 +0.293 +13.1

author does not report pooled models and so this is not a direct replication. That said, the

sign of each model is in line with Bassi’s findings – good weather decreases the probability

of voting for the safe candidate (holding the expected payoff constant). Rainfall (in absolute

and relative terms) increases the likelihood of risk-averse choices. The difference between

cluster-robust and conventional standard errors is very large. In three of the four models,

the clustered standard error is over twice the size of the conventional estimate. Moreover,

the absolute rainfall model coefficient becomes insignificant at conventional levels, which is

notable given the respective means difference in Bassi (2019) is significant.

In summary, this section has applied the design-based criteria to assess how well published

experiments accord with the design-based approach advocated in this paper and in Abadie
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et al. (2017). I find both cases where researchers incorrectly use clustered variance estimators

and cases where cluster-robust estimation should have been used. In addition, for the three

studies replicated in this section correcting the variance estimator has large inflationary

effects on the reported variance – in one case, undermining a published finding. Irrespective

of whether the results affect the degree of confidence in the (null) results, researchers should

be concerned whether reported standard errors accurately reflect the uncertainty in their

point estimates as an inherent estimation problem.

5 Practical guidance for experimentalists

Section 4 demonstrates that group-level data structures exist in a variety of experimental

settings. Researchers should be clear about what type(s) of uncertainty they wish to capture

and how this correlates with any group-level features of their data. If groups are sampled

from a wider population of groups, or treatment is assigned at the group-level, cluster robust

estimation is appropriate. Before concluding, it is worth briefly noting some concrete and

practical implications for common types of experimental design.

Randomised controlled-trials. There are many reasons why researchers may assign

treatments that are correlated at the group level. One particular instance is when treat-

ment affects multiple observed units simultaneously (as in the hypothetical Study 2). This

is most obviously the case in randomised controlled-trials (RCTs), which frequently involve

group-level treatments (Peters, Langbein and Roberts, 2016; Kendall, 2003). For instance,

Banerjee et al. (2007) conduct an RCT in which treatment is a standardized teaching pro-

gramme assigned at the school year-group level. Maths and language scores at the student

level are then compared across control and treatment schools for that year-group. Each

student belongs to a school year-group in either treatment of control. Students of the same

classroom, therefore, have perfectly correlated treatment assignment.

Clearly, in cases such as these where treatment is delivered at the group-level, ρx 6= 0 by
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design. All students in the same class receive the same treatment assignment, and therefore

clustering standard errors is appropriate. Moreover, the magnitude of difference in standard

errors between conventional and cluster-robust estimations will likely be much greater than

in the fully-randomised context since ρx will equal 1 in expectation.

The researcher knows whether treatment assignment is assigned at the group-level prior

to experimentation. How treatment is assigned is not a feature of the data, but of the

experimental protocol. Researchers can ascertain whether clustering is appropriate on the

basis of treatment assignment prior to estimation (and even pre-register it).

This type of experimental design has a lab-based parallel. In some lab experiments,

treatment may be only feasible at the experimental-session level such that all participants

for a given session receive the same treatment.28 This might be the case because subjects

interact in a common experimental game, or because some feature of the lab must be altered

in order for the treatment to be delivered. In which case, as in the RCT design, ρx 6= 0 in

expectation. Moreover, while experimental sessions are not naturally-occurring groups like

villages (groups where we would expect unobserved group-invariant features that affect the

error term), experimental session groupings are know to influence outcomes (see Fréchette

(2012) for a full discussion of session-effects). In which case, not only should researchers

cluster based on clustered assignment, but also we would expect the difference in variance

estimations to be substantial.

Conjoint experiments. Conjoint experiments typify designs that have both grouped

data and observation-level treatment (as in the hypothetical Study 3). Conjoint experiments

involve presenting subjects with a combination of two profiles, and forcing subjects to choose

which profile they prefer. The value for each attribute (the attribute level) for each profile

is randomised (Hainmueller, Hopkins and Yamamoto, 2014). To increase the efficiency of

these designs, experimenters typically ask subjects to make choices across multiple sets of

28Session-level treatment inherently captures some form of causal uncertainty. Given each group is assigned
to one treatment arm or another, how different would our effect(s) be if the random treatment assignment
differed?
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candidates. For instance, in a two-profile design in which n subjects make k choices, the

dataset is n×k×2 rows long. Since the attributes are randomised at the profile-level, conjoint

experiments do not satisfy the assignment-based justification for cluster robust estimation.29

Group-level error structures will arise in conjoint designs. Each k × 2 subset of the data

corresponds to a single individual. Therefore, any idiosyncratic features of the individual

that affect their responses, or attitudes, will affect multiple observations in the dataset. For

instance, while the potential values of each attribute are constant across individuals, how

individuals interpret these values may differ (Dafoe, Zhang and Caughey, 2018). In which

case, individual-level cognitive or semantic-processing differences may lead to error structures

that are similar within an individual’s set of responses, but differ between individuals.

The typical conjoint design does, however, employ cluster-based sampling. From the pop-

ulation of possible subjects, we randomly sample a vanishingly small number of individuals.

Each of these individuals then completes multiple rounds of the experiment. Therefore, if

we wish to make a generalised claim about the variance in the population, we should cluster

standard errors. And since the population is likely to be much larger than the number of

individuals sampled, we satisfy the asymptotic assumptions of the LZ estimator. If, however,

our variance estimation is based on estimating the causal effect conditional on those chosen,

then clustering is not required.

Researchers may wish to refrain from using cluster-robust variance estimators within

conjoint designs if they either 1) want to assess the causal effect on this specific sample, or 2)

field the experiment on a sample that likely contains a high proportion of clusters within the

relevant population. Suppose we run a conjoint on politicians in a state legislature. Instead

of having a small sample of subjects from a large population, with a sufficient response rate

one’s data would include a substantial proportion of all state legislators. In which case, it

is inappropriate to cluster standard errors because the asymptotic assumption that g
G
→ 0

29Unlike experimental designs discussed thus far, in the conjoint experiment there are multiple treatment
coefficients. If each profile has A attributes and an average of L potential values per attribute, there will be
(A− 1)× L treatment coefficients (since each attribute has one omitted reference category). This does not
substantively alter the variance explanation.
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is not satisfied. This guidance holds even if there are idiosyncratic features of individual

legislators that lead to correlated errors across each respondent’s choices.

6 Discussion

In this paper, I present a comprehensive guide to cluster-robust estimation in experimental

settings. I build on recent debates about variance estimation in the presence of randomisation

(Blattman, 2015; Cameron and Miller, 2015; Abadie et al., 2017) and simplify the correct

logic for applied researchers. In particular, I motivate the design-based logic developed by

Abadie et al. (2017) and provide concrete estimation advice for applied experimentalists.

In short, if either treatment is assigned at the group-level or the groups in the data are

a small sample from a wider population then clustering is appropriate. Conversely, experi-

ments with large proportions of the group population and observation-level randomisation

should not use cluster-robust variance estimators, irrespective of whether group-level features

influence the outcome.

Using Monte Carlo simulations and replication data, I demonstrate that randomisation

does not eliminate differences between conventional and cluster-robust standard errors. Re-

searchers will likely observe differences between these two variance estimates, and have to

make a substantive decision about which is the unbiased estimate. The principled guidance of

this paper aims to encourage best practice, and debunk assumptions about randomisation’s

impact on variance estimates.

More generally, this paper aims to highlight that point-estimate uncertainty is itself an

estimation problem. Given its fundamental importance to hypothesis testing, variance esti-

mation should be treated as seriously as the corresponding point-estimates. Since the actual

variation of the population is unknown, being aware of how the design of one’s experiment

influences the appropriateness of different variance estimators is key for valid inference about

experimental treatment effects.
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A Appendix

A.1 Uncertainty as a function of randomisation

In the main text, Table 1 presents a particular case in which there is uncertainty over the

treatment effect due to randomisation – what Abadie et al. (2014) call “causal uncertainty”.

In short, these issues arise because of the many potential random treatment assignments only

one is ever realised. Given we can only ever estimate the treatment effect (we do not observe

the full outcomes schedule) our estimate may differ dependent on the specific treatment

assignment vector drawn. There are other plausible configurations of potential outcomes

that generate similar concerns about causal uncertainty.

This section briefly motivates some alternative cases that collectively highlight why ex-

perimentalists should care about this causal uncertainty. In what follows, assume that our

data is the full relevant population, such that sampling concerns drop out.

The first configuration demonstrates a Type I error whereby an estimated effect (τ̂)

is non-zero when the true causal effect (τ) is precisely zero. In which case, without an

appropriate measure of uncertainty, a single randomisation will yield a false positive result.

Table A1 presents a potential outcomes schedule and treatment assignment for which this

state of affairs holds.

Table A1: τ = 0, τ̂ > 0

i Yi(1) Yi(0) Di

1 10 10 1
2 5 5 0
3 10 10 1
4 5 5 0

Given these potential outcomes τ is precisely zero – there is no effect on any subject

within the population. However, given the random assignment Di, the best estimate of

the treatment effect is the difference in means between those in treatment and control i.e.
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10 − 5 = 5. This estimate is, technically, unbiased. As we increase the N the estimate

will tend towards zero. But with this particular random assignment vector, it would appear

there is a positive and substantial causal affect. To prevent a false positive, our measure of

uncertainty should account for this type of chance occurrence even as the true population

parameter is zero and the potential outcomes remain fixed.

In the configuration above, while the causal effect (of 0) is constant across individuals, the

control/treatment outcomes vary. This sort of scenario depicts a highly simplified case where

individuals hold different preferences/outcomes of which none are affected by an experimental

stimulus. The treatment itself is homogeneous (it is precisely zero) but heterogeneity in the

potential outcomes across individuals creates some leeway for our unbiased estimator to

return a non-zero effect estimate.

It is also possible to construct cases where causal uncertainty yields a Type II error.

Table A2 presents an alternative potential outcomes schedule that yields the converse to

Table A1.

Table A2: τ > 0, τ̂ = 0

i Yi(1) Yi(0) Di

1 5 10 1
2 5 10 1
3 5 0 0
4 5 0 0

In this case, there are clearly two separate effects of treatment. For individuals i = 1 and

i = 2 the effect of treatment is negative, whereas for the other two individuals it is positive.

This might be the case in some sort of experiment where an information prime corrects

individuals prior perceptions of some phenomena or quantity. Since the absolute size of the

effect is the same across these two subgroups, the true population average treatment effect

is zero. Under Di in Table A2, the estimated average treatment effect is positive.

As in the first potential outcomes schedule in Table A1, this configuration exhibits het-
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erogeneity in the potential outcomes. Unlike in the first case, the heterogeneity is present

both in the control condition and the direction of the treatment effect. The treatment itself

has a heterogeneous effect. Individuals’ outcomes under treatment are identical precisely be-

cause the treatment acts in opposing directions for the two subgroups with different control

outcomes.

The example potential outcomes in the main text demonstrate another issue where the

true population average treatment effect is smaller than the estimated average treatment

effect but still non-zero given some non-compliance. Common to this example and the further

two supplementary configurations in this appendix section, uncertainty in the estimated

effect arises as a result of stochastic assignment to either treatment or control.

Of course, the extent to which all members of particular subgroups are assigned to the

same treatment status diminishes with the number of observations (assuming a truly random

assignment). Part of the attraction of experimental methods is that we expect balance

across covariates precisely for this reason – with equiprobable treatment probabilities and a

sufficiently large sample any feature that may confound the effect estimate should be equally

distributed among treatment conditions.

That being said, a truly random procedure will not necessarily ensure perfect balance.

If there is any heterogeneity to the treatment effect, or to outcomes among individuals, dif-

ferent equiprobable assignments will lead to different estimated average treatment effects.

As researchers, we aim to making inferences about the true treatment effect. The confi-

dence we place in our estimates should therefore capture this uncertainty as a function of

randomisation, separate from any sampling-related concerns.

50



A.2 Derivation of variance

Suppose some treatment D is linearly related to an outcome y:30

Y = Dβ + ε, (12)

To mimimise the squared residuals, rearrange Equation 12 to define the residual as

ε = Y − Xβ, multiply this expression by its transpose, and expand to get the quantity

of interest31:

ε′ε = y′y − 2β′D′y + β′D′Dβ. (13)

To find β̂, we differentiate with respect to β, set the first-order condition to zero and

solve:

dε′ε

dβ
= −2D′y + 2D′Dβ̂ ⇒ 0

D′Dβ̂ = D′y

(D′D)−1D′Dβ̂ = (D′D)−1D′y

β̂ = (D′D)−1D′y (14)

For convenience later on, we can substitute Equation 12 back into Equation 14, to express

the estimated coefficients in terms of the true coefficients and the residual:32

30This derivation is heavily based on course notes from by Michael J. Rosenfeld entitled “OLS in Matrix
Form”, which can be accessed at https://web.stanford.edu/~mrosenfe/soc_meth_proj3/matrix_OLS_

NYU_notes.pdf.
31This step relies on the transposition of matrices. First as it applies to the expansion of the squared

residuals:

ε′ε = (y −Dβ)′(y −Dβ)

= (y′ − β′D′)(y −Dβ)

= y′y − y′Dβ − β′D′y + β′D′Dβ,

and second as it applies to simplifying the expanded regression:

y′Dβ ≡ β′D′y
∴ y′y − y′Dβ − β′D′y + β′D′Dβ ≡ y′y − 2β′D′y + β′D′Dβ

32Here, note that (AB)−1(AB) = I and therefore (X ′X)−1X ′X drops out of the equation.
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β̂ = (D′D)−1D′(Dβ + ε)

= (D′D)−1D′Dβ + (D′D)−1D′ε

= β + (D′D)−1D′ε (15)

Our estimate of variance V ar(β̂) is the squared difference between the “true” coefficient

(β) and our best estimate (β̂), such that:

V ar(β̂) = E[(β̂ − β)(β̂ − β)′] (16)

Substituting β̂ with Equation 15,

V ar(β̂) = [((D′D)−1D′ε)((D′D)−1D′ε)′]

= E[(D′D)−1D′ε)(ε′D(D′D)−1)]

= E[(D′D)−1D′εε′D(D′D)−1)]

= (D′D)−1E[εε′]D(D′D)−1 (17)
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A.3 JEPS review

Table A3: All articles published in JEPS between 2017 and 2019

Authors Type of experiment Sample
Main

result

Observation-

level
Obs Cluster?

Pérez and Tavits

(2019)

Survey experiment

(phone)
Bilingual adults Table 1 Individual 262 No

Morton and Ou (2019) Lab experiment Students Figure 1
Individual-

period
140 No

Loewen and

MacKenzie (2019)
Survey (elite) Political elites Table 2

Politician-

contact
404 Yes

Levine and Kline

(2019)
Field experiment

Women members of

community group
Table 1 Individual 100708 No

Israel-Trummel and

Schachter (2019)
Survey experiment

African American

adults
Figure 1 Individual 1200 No

Huddleston (2019)
Online survey

experiment
Mturk Figure 2 Individual 1512 No

Hou and Quek (2019) Survey experiment
Nationally

representative
Table 1 Individual 824 No
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Green, Davenport and

Hanson (2019)

Natural/survey

experiment
Men Table 5 Individual 900 Yes

Flynn and Krupnikov

(2019)
Survey experiment

Nationally

representative
Table 2 Individual 1031 No

Dietrich, Hyde and

Winters (2019)
Lab experiment Students Table 5 Individual 777 No

DeScioli and

Kimbrough (2019)
Lab experiment Not stated Table 1

Individual-

round
4000 Yes

Denny and Driscoll

(2019)
Survey experiment

Nationally

representative
Table 2 Individual 120 No

Demel et al. (2019)
Lab-in-the-field

experiment

Employed,

unemployed, and

students

Table 1
Individual-

allocation
1092 Yes

Bokemper, Descioli

and Kline (2019)
Online experiment Mturk Table 2 Individual 542 No

Bassi (2019) Lab experiment
Students/university

employees
Table 5

Individual-

round
1660 No

Zhang (2018) Lab experiment Students Table 2 Individual 371 Yes

White et al. (2018) Online experiment Mturk Figure 1 Individual 2006 No
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Trump and White

(2018)
Survey experiment

Nationally

representative
Figure 1 Individual 1014 No

Severson (2018) Survey experiment
Nationally

representative
Figure 2 Individual 918 No

Merolla and

Zechmeister (2018)
Survey experiment Adult Figure 1 Individual Numerous No

Linos and Twist

(2018)
Survey experiment

Nationally

representative
Table 1 Individual 1000 No

Kingsley and Muise

(2018)
Lab experiment Not stated Table 2

Individual-

round
1260 Yes

Ihme and

Tausendpfund (2018)
Survey experiment Students Table 1 Individual 377 No

Enos and Celaya

(2018)
Online Experiment Mturk/Student Table 1

Individual-

round
1081 Yes

Clayton (2018) Natural experiment Adults Table 1 Individual 996 Yes

Butler and Pereira

(2018)
Survey experiment Political elites Table 1 Individual 463 No

Busby and Druckman

(2018)
Survey experiment Students Table 1 Individual 384 No

55



Buntaine and Prather

(2018)
Online experiment Mturk Figure 1 Individual 1140 No

Bonilla and Mo (2018) Survey experiment
Nationally

representative
Figure 1 Individual 514 No

Andersen and Lau

(2018)
Survey experiment Mturk Table 1 Individual 364 No

Amira (2018) Survey experiment Mturk Figure 2 Individual 593 No

Soroka et al. (2017) Survey experiment Adults Table 1 Individual 3783 No

Scotto et al. (2017)
Online survey

experiment
Adults Table 1 Individual 1010 No

Rogers (2017) Lab experiment Students
Figures

1/2

Individual-

round
109 No

Peterson and

Simonovits (2017)
Survey experiment

Nationally

representative
Table 2 Individual 1924 No

Pedersen (2017)
Online survey

experiment
Adults Figure 1 Individual 1210 No

Lorenz, Paetzel and

Tepe (2017)
Lab experiment Not stated Table 1

Individual-

round
480 No
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Li and Zeng (2017)
Online survey

experiment
Adults Figure 1

Individual-

round
8240 Yes

Leeper (2017)
Online survey

experiment

Nationally

representative
Table 1 Individual 879 No

Kobayashi, Miura and

Inamasu (2017)
Lab experiment Students Table 1 Individual 104 No

Klofstad (2017) Online experiment Adults Table 1 Candidate 400 Yes

Jeon, Johnson and

Robinson (2017)

Lab-in-the-field

experiment
Two ethnic groups Table 2 Game 89 No

Green and Zelizer

(2017)
Field experiment Republican women Table 2 Individual 58751 No

Franco et al. (2017) NA NA NA NA NA NA

Costa (2017) NA NA NA NA NA NA

Butler and Crabtree

(2017)
Field experiment Political elites Table 1 Individual 11801 No

Bechtel and Scheve

(2017)

Online survey

experiment

Nationally

representative
Figure 3 Individual 8497 No

Barber et al. (2017)
Online survey

experiment
Mturk Table 2

Individual-

choice
5720 No
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Arceneaux (2017)
Online survey

experiment
Mturk (white adults) Table A6

Individual

choice
1654 No
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