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Abstract

Conjoint experiments are fast becoming one of the dominant experimental meth-
ods within the social sciences. Despite recent efforts to model heterogeneity within
this type of experiment, the relationship between the conjoint design and lower-level
causal estimands is underdeveloped. In this paper, we clarify how conjoint heterogene-
ity can be construed as a set of nested, causal parameters that correspond to the levels
of the conjoint design. We then use this framework to propose a new estimation strat-
egy, using machine learning, that better allows researchers to evaluate treatment effect
heterogeneity. We also provide novel tools for classifying and analysing heterogeneity
post-estimation using partitioning algorithms. Replicating two conjoint experiments,
we demonstrate our theoretical argument, and show how this method helps estimate
and detect substantive patterns of heterogeneity. To accompany this paper, we pro-
vide new a R package, cjbart, that allows researchers to model heterogeneity in their
experimental conjoint data.

Keywords: Heterogeneity, conjoint, BART, AMCE, experiment

*This study was partially funded by the National Agency for Research and Development ANID, and we ac-
knowledge the research support provided by FONDECYT 2020 grant number 1201397. The survey was con-
ducted according to the University of Oxford’s policy for human subjects research and approved by the Uni-
versity of Oxford Medical Sciences Interdivisional Research Ethics Committee (approval ID:R72328/RE001).
Informed consent was obtained from each participant at the beginning of the survey. Replication files are
available in the JOP Dataverse (https://dataverse.harvard.edu/dataverse/jop). The empirical analysis has
been successfully replicated by the JOP replication analyst.

†Assistant Professor. Department of Methodology, London School of Economics and Political Science.
Contact: Connaught House, 65 Aldwych, London, WC2B 4DS, UK. Email: t.robinson7@lse.ac.uk

‡Professor. Nuffield College, University of Oxford. Contact: Nuffield College, New Road, Oxford, OX1
1NF, UK. Email: raymond.duch@nuffield.ox.ac.uk. Phone: +44 (0)1865 278515



In the last decade, the number of papers per year that mention “conjoint experiments”

has risen sixfold, from 110 articles published in 2010 to 600 published in 2020.1 Con-

joint designs offer researchers an efficient means of recovering multiple causal parameters

across a wide range of research areas, including radical right voting (Chou et al. 2021),

tax preferences (Ballard-Rosa et al. 2017), and contemporary drivers of migration (Spilker

et al. 2020; Duch et al. 2020).

The predominant causal quantity estimated in conjoint experiments is the average

marginal component effect (AMCE; Hainmueller et al. 2014), defined as “the effect of

a particular attribute value of interest against another value of the same attribute while

holding equal the joint distribution of the other attributes in the design, averaged over

this distribution as well as the sampling distribution from the population" (Bansak et al.

2021, 29). While theoretically complex, the AMCE is easily estimated using conventional

regression techniques, and allows researchers to isolate the average effect of attributes on

the probability of choosing a profile.

By virtue of being an average, the AMCE may mask significant heterogeneity in subjects’

behaviour. Researchers often want to know whether treatment effects differ depending on

characteristics of the subjects who take part in their study, even though these sorts of

analyses preclude causal interpretation since covariates are not randomised. For example,

analysing heterogeneity can be useful in efforts to generalise treatment effects to popula-

tions of interest and for providing hints at possible causal mechanisms.

To estimate heterogeneity in AMCEs, studies typically present separate models for dis-

tinct sub-groups within the data.2 Despite its simplicity, this subset approach is suboptimal.

First, the strategy presumes that researchers have strong theoretical and empirical reasons

to focus on specific sub-groups. Without such grounds, (repeated) subset analysis risks the

1Based on a Google Scholar keyword search for “conjoint experiment".
2Spilker et al. (2020), for example, conduct subgroup analyses on age, income, education and location.
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inferential problems associated with multiple testing. Moreover, beyond convenient di-

chotomous splits in the data, subgroup analysis becomes unwieldy once researchers want

to consider more complex groups of respondents. Second, directly interpreting subgroup

differences across models can be misleading if each subgroup’s preference differs over the

reference level (Leeper et al. 2020). Third, subgroup analyses reduce the number of obser-

vations in each model, increasing uncertainty by preventing the models from “borrowing"

shared variation between subsets of the data.

We propose a strategy for detecting and characterizing heterogeneity in these marginal

effects, which addresses some of these limitations by exploiting the richness of the data

generated in conjoint experiments. Recent methodological advances point to two specific

causal concerns in conjoint experiments: causal interaction — estimating the efficacy of

combinations of treatment variables (e.g. Ham et al. 2022; Goplerud et al. 2022) – and

causal moderation – estimating variation in treatment effects across individuals or pre-

treatment covariates (e.g. Zhirkov 2022). Our approach focuses on this latter concern,

building on a growing corpus of work highlighting the utility of machine-learning methods

in experimental settings (Hill 2011; Green and Kern 2012; Wager and Athey 2018; Künzel

et al. 2019).

We make three novel contributions to the study of treatment effect heterogeneity in

conjoint experiments. First, we clarify how lower-level causal quantities, i.e., subject-

specific or conditional treatment effects, are situated within the structure of conjoint de-

signs. We present a simple derivation of nested causal effects that disaggregates the AMCE

to the level of the individual, round, and observation within the experiment.

Second, we leverage non-parametric machine learning estimators to estimate hetero-

geneity in conjoint treatment effects. We predict counterfactual treatment outcomes at the

observation-level and aggregate these estimated effects to produce higher-level treatment

effect estimates. Our non-parametric strategy is based on Bayesian Additive Regression
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Trees (BART) (Hill 2011; Green and Kern 2012; Duch et al. 2020). Unlike subgroup anal-

yses and other approaches that focus on modelling each individual separately (Zhirkov

2022), our approach leverages the full support of the data rather than relying on much

smaller subsets of observations. We also provide variance estimators that exhibit good

coverage, allowing researchers to quantify the uncertainty over these predicted effects.

Third, we characterize the extent and types of heterogeneity once we have estimated

the nested causal quantities. We repurpose tools from the interpretable machine learning

literature to measure how important different subject-level covariates are for partitioning

the distribution of estimated individual-level marginal component effects (Ishwaran and

Lu 2019). Our approach allows for bias-corrected estimates of the importance of variables,

and thus to detect which variables are driving treatment effect heterogeneity.

We demonstrate our approach using data from the recent Duch et al. (2021) conjoint

study of global preferences over COVID-19 vaccination policies. We also provide a new R

package – cjbart – that implements our proposed method, allowing researchers to estimate

and analyse treatment effect heterogeneity within conjoint experiments. This package is

available on the Comprehensive R Archive Network (CRAN).

1 Heterogeneity in conjoint designs

Conjoint experiments allow for efficient estimation of multiple causal parameters that af-

fect subjects’ choices. Subjects are presented with profiles defined by a set of attributes.

Each attribute has multiple values, or “levels", which are simultaneously randomised. Sub-

jects then make a discrete choice over these profiles. Through repeated observation, re-

searchers can estimate the marginal effects of each attribute-level (compared to some ref-

erence level) on subjects’ choices.

Typical conjoint estimands may, however, belie diversity in subjects’ behavior. To il-

lustrate the challenge facing scholars, consider a recent conjoint experiment conducted
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by Duch et al. (2021). This 13-country conjoint experiment asked subjects in each round

to choose which of two profiles should be prioritized for a COVID-19 vaccine. In Figure

1a we replicate the AMCE and sub-group estimates for hypothetical profiles who had low

incomes. On average, subjects were more likely to choose profiles that were labelled low-

income relative to those on an average income, and subgroup analyses suggest the effect

of this attribute-level is conditioned by subjects’ own ideological stance.

However, Figure 1b suggests the narrative is not quite as simple as the subgroup anal-

ysis would suggest. Here we plot the selection probabilities (by colour) and densities (by

height) for low-income profiles, conditioning on both ideological self-identification and the

country of each subject in the Duch et al. (2021) study. The data comprising this plot cov-

ers 82,503 forced-choices made by the 15,536 participants in the study. While we do see

a general trend that right-leaning subjects are less likely to prioritise low-income profiles,

there is quite clear heterogeneity in this relationship across contexts. For some countries –

like Brazil, Uganda, and India – the relationship is far less pronounced.

The subgroup strategy demonstrated in Figure 1a fails to capture this cross-country

variation in part because it involves a more complicated, a priori specification of subgroups.

Running separate models for left and right-identifying subjects in each country would en-

tail estimating 26 separate models, each powered by far fewer observations. Even if this

were feasible, this strategy would still omit variation within the dichotomous ideological

splits. For example, subjects in Canada and the UK both exhibit notable variation within

right- and left-leaning subjects respectively.

In order to understand heterogeneity in conjoint experiments, researchers should use

methods that allow for the modelling of interactions between covariates and conjoint at-

tributes without imposing a priori functional form on these relationships. Given the rich

data generated by the conjoint design, we should allow the model itself to find interactions

between randomised conjoint attributes and subjects’ characteristics.
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Figure 1. Impact of respondents’ ideology on choosing to prioritise vaccinating low-income
profiles
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(a) AMCE estimates for the “Lowest 20% income-level" attribute-level, estimated on the full data
and subsets containing Left/Centre and Right-leaning subjects respectively.

(b) Proportion of profiles selected (marginal mean) that contain the “Lowest 20% income-level"
attribute-level, by subjects’ ideology and country. The height of the bars reflect the number of
observations in each cell.
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The remainder of this section outlines a series of lower-level causal estimands that

relate to the multi-level structure of the conjoint design and that allow us to model het-

erogeneous treatment effects. We initially restrict our focus to cases where there is com-

plete randomisation of values in the conjoint experiment.3 This assumption simplifies the

analysis and estimation of the causal parameters, and is the typical design employed by

researchers in practice. In Section 2.4, we demonstrate how our strategy can incorporate

non-uniform distributions of attribute-levels following the insights of de la Cuesta et al.

(2022).

1.1 Nested causal quantities in conjoint designs

Suppose N individuals (indexed by i) choose between J profiles across K rounds of the

experiment. Within each round of the experiment, we randomly assign attribute-levels

across L attributes for each profile (Hainmueller et al. 2014). Having run the experiment,

the researcher faces a data structure with N ⇥ J ⇥ K rows and L + X columns (where

X are any covariates observed for each subject), from which causal parameters of interest

can be estimated.

The most common parameter estimated from this design is the average marginal com-

ponent effect (AMCE). This estimand reflects the overall effect of a specific attribute-level

on the probability of choosing a profile (compared to some baseline reference level), after

accounting for the possible effects of the other attributes in the design. To account for

these other effects, the parameter is averaged over the effect variations caused by these

other attributes.

With complete randomisation of the attributes, and adapting the notation set by Hain-

mueller et al. (2014), we define the potential outcome for a profile shown to a respondent

3In other words, where the probability of assigning each attribute-level is constant within each attribute and
independent of the values of other attributes.
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in the experiment as the (non-parametric) function:

Yijk(tl, Tijk[�l],Ti[�j]k) = g

✓
Si(tl, Tijk[�l],Ti[�j]k),Rik(tl, Tijk[�l],Ti[�j]k),Pijk(tl, Tijk[�l],Ti[�j]k)

◆
,

where tl is the value of the lth attribute shown to individual i, in profile j, of round k

of the experiment, Tijk[�l] is the vector of values for the remaining attributes in the same

profile, and Ti[�j]k is the unordered set of possible treatment vectors.4 Si, Rik, and Pijk are

respondent-, round-, and profile-level random components of this function.

Using the defined potential outcomes, the AMCE can be expressed as:

⌧l = E
⇥
Yijk(tl = l1, Tijk[�l],Ti[�j]k)� Yijk(tl = l0, Tijk[�l],Ti[�j]k)

⇤
.

By definition, the AMCE captures the central tendency of subjects’ behavior with respect

to each attribute of the design. Often, however, researchers are interested in whether these

effects differ dependent on subject characteristics or the context of the experiment. As

others have noted, the AMCE can be disaggregated into more granular causal quantities of

interest (Hainmueller et al. 2014; Abramson et al. 2020; Zhirkov 2022). Here we formalise

this logic with respect to the structure of the data generating process itself.

First, we disaggregate the AMCE into N individual-level effects by conditioning the

AMCE estimand on the individual-level random component of our model:

⌧il = E
⇥
Yijk(tl = l1, Tijk[�l],Ti[�j]k)� Yijk(tl = l0, Tijk[�l],Ti[�j]k)|Si

⇤
.

This lower-level parameter is the individual-level marginal effect (IMCE), and reflects the

change in probability for a specific subject i of choosing a profile given an attribute-level

(compared to some reference category) averaged over the effects of all other attributes.

The estimand is similar to subgroup analysis of AMCEs – what Hainmueller et al. (2014)

call conditional AMCEs. Unlike that specification, rather than subsetting the data along a

4In Appendix A, we relax this assumption. Note also, for the sake of completeness, that Tijkl = tl.
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vector of covariates, we subset based on the subject identifier and therefore consider the

conditional effect based on all of subject i’s characteristics. 5

The IMCE is substantively useful because it allows researchers to inspect heterogeneity

in the treatment effects derived from conjoint experiments (Abramson et al. 2020), and

is commensurate with more general heterogeneous effect estimation strategies (Künzel

et al. 2019). By recovering a vector of individual-level estimates, researchers can compare

how non-randomised aspects of the data (i.e. subjects’ characteristics) correspond to the

magnitude and direction of the individual-level predicted effects.

In turn, the IMCE can be decomposed over the repeated observations taken for that in-

dividual (i.e. the choices over profiles subjects make across multiple rounds of the conjoint

experiment). This decomposition can be split into two steps since subjects typically see

J � 2 profiles per round.6 First, therefore, we can disaggregate the round-level marginal

component effect (RMCE):

⌧ikl = E
⇥
Yijk(tl = l1, Tijk[�l],Ti[�j]k)� Yijk(tl = l0, Tijk[�l],Ti[�j]k)|Si,Rik

⇤
.

This estimand reflects the effect of a component within a specific round (k) of the experi-

ment for a given individual. Under the conventional no carryover assumption, this random

component should be mean zero and evidence to the contrary may suggest this assumption

has been violated.

Finally, the RMCE can be further decomposed into an observation-level marginal

component effect (OMCE) by conditioning on the profile-level random component:

⌧ijkl = E
⇥
Yijk(tl = l1, Tijk[�l],Ti[�j]k)� Yijk(tl = l0, Tijk[�l],Ti[�j]k)|Si,Rik,Pijk

⇤
.

This profile-level random component contains three aspects of the conjoint design: the

5Despite subsetting on the identifier, the IMCE may be moderated by covariate features that generalise across
subjects. Our estimation strategy in Section 2 allows for this moderation to be discovered.

6Though we note it is possible to have single-profile conjoint rounds.
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randomised values of the L-1 attributes, plus the randomised order of those attributes (as

is typical in conjoint experiments), and finally the order of the two profiles (whether a

profile appears on the left or right in a two-profile design). The expectation is therefore

taken over the fundamental uncertainty in the outcome, uncertainty that one would expect

under the assumption of a super-population inference framework. In other words, the

OMCE captures what a specific individual would have done, in exactly that vignette, at

that point in the experiment, varying only the conjoint attribute of interest. Across multiple

(hypothetical) realisations we might nevertheless expect some variation in choosing that

profile, given the probabilistic nature of that choice.

From an applied perspective, the informativeness of the OMCE is limited given the

granularity of the estimand. That said, it serves a useful statistical purpose given the more

general, nested relationship between the OMCE, RMCE, IMCE, and AMCE. In particular,

by the law of iterated expectations ⌧l = Ei

h
Ek

⇥
Ej[⌧ijkl]

⇤i
.7Assuming there are no carry-

over effects across rounds, the OMCE can be thought of as an independent draw from

the individual-level distribution. The individual-level marginal effect can therefore be es-

timated by aggregating OMCEs (as we discuss in Section 2.1).

2 Estimating the IMCE

Estimating lower-level estimands provides specific leverage over questions about the het-

erogeneity of these effects. The most effective level of analysis is the individual-level,

since we can analyse how the IMCE varies dependent on characteristics of the subjects.

Therefore, we propose a three step strategy to recover estimates of the IMCEs.

First, we model the relationship between the forced-choice outcome, conjoint attribute-

levels, and subject-level covariates. This allows us to estimate some function that captures

the potentially heterogeneous relationship between the conjoint attributes and subjects’
7Subscripts under the expectation symbol indicate over what level the conditional means are taken. Table
A1 in the Appendix illustrates this relationship from a data perspective.
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characteristics when making choices in the experiment. Second, we use the trained model

to predict counterfactual outcomes at the observation-level from which we can estimate

OMCEs. Third, following the nested logic outlined in Section 1, we aggregate these OMCE

estimates to the level of the individual in order to recover estimates of the IMCEs.

It is worth noting that researchers could use any number of possible estimators to

model subject-level heterogeneity in the first step. We provide a specific implementation

in this paper and accompanying software that uses Bayesian Additive Regression Trees

(BART) (Chipman et al. 2010), but other researchers may wish to pursue alternative types

of models. To that extent, the general approach detailed here can be considered a meta-

strategy for estimating individual-level marginal effects in conjoint designs. In Appendix

E, for example, we demonstrate our method using causal forests instead of BART (Athey

et al. 2019).

One key benefit of this meta-strategy is that all data is included in the model when

estimating the relationship between observed covariates, attribute-level assignments, and

the conjoint outcome. This feature is in contrast to both subgroup analysis (where effects

are modelled using only a smaller number of individuals who share a covariate value) and

more recent approaches that recommend running separate models for each respondent

(Zhirkov 2022).8 Particularly when modelling each individual separately, constraints on

experimental survey length may lead to large imprecision in the estimates. In our pro-

posed method, the model leverages the full support of the data, across all observations,

to discover covariate interactions that modify the causal effect at the individual-level. In

Section 4 we demonstrate the comparative performance of our method compared to a

subset-modelling strategy.

8Our strategy is a form of data-adaptive subgroup analysis, as the predicted outcomes are determined by
observations closest to the datapoint after recursive partitioning of the full data. Unlike conventional sub-
group analyses, however, tree-based approaches also use the data to find the most informative clusters,
rather than relying on researchers to specify these a priori.
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Moreover, by using machine learning, this method improves the analysis of potential

heterogeneity in two ways. First, it reduces researcher degrees of freedom to arbitrarily

run many subgroup analyses, which we would expect to inflate the chances of false positive

discoveries. Second, it enables the identification of more complex relationships between

variables. Common to many machine-learning methods, the model itself (rather than the

researcher) determines the final functional form of the relationship between the supplied

predictor variables and the outcome.

2.1 Parameter estimation
Step 1 In the first step, we use BART to model potential heterogeneity in the observed

experimental data defined as:

P (Yijk = 1|Tijk, Xi) = f(Tijk, Xi) ⇡ f̂(Tijk, Xi),

where Yijk is the observed binary outcome, Tijk is the vector of treatment assignments

across the L attributes, and Xi is the vector of covariate information for subject i consid-

ering profile j in round k of the experiment. f is some unknown true data generating

process, and f̂ is an estimate of that function.

BART is a tree-based supervised machine learning strategy that models the response

surface by summing the predictions of many constrained individual tree models – recursive

splits of the data into ever more homogeneous groups (Chipman et al. 2010). Appendix B

provides a more detailed description of the BART algorithm. In short, there are two major

difference between BART and other tree-based methods like random forests. First, the final

prediction is not the average across a set of trees. Instead each tree is a “weak learner”

that seeks to explain only the residual variance in the outcome not explained by the T � 1

other trees. In that sense, the constituent trees in the BART forest work together to predict

the full outcome (rather than all trying to predict the same outcome entirely). Second,

BART models include random variables as parameters, allowing draws to be taken from
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the posterior. This feature entails convenient Bayesian properties that allow us to recover

variance estimates at the IMCE level, which we discuss below.

In addition to these advantage, we also use BART because the models are relatively

robust to the choice of tuning parameters (He et al. 2019), as discussed in Appendix B.

These priors are set partially with respect to the observed data, and the default parame-

ters identified by Chipman et al. (2010) are known to perform well across data contexts

(Kapelner and Bleich 2016). Cross-validation can be used to improve model performance

further, if necessary.

To estimate the BART model, we supply a matrix of “training" data at the observation-

level. The training data are simply the results of the conjoint experiment. Each row reflects

a profile within a round shown to a specific subject. The matrix columns comprise the

observed individual decision (0 or 1) regarding that profile; the assigned attribute-levels

for each of the L attributes in the vignette (which vary within individuals); and covariate

columns that are invariant at the individual-level. During training, the BART algorithm

iterates through the trees in the model, many times over, updating the model parameters

to minimize the error between a vector of predictions Ŷ and the observed outcomes Y .9

Step 2 Using the final trained model (f̂), we predict counterfactual outcomes by alter-

ing the value of attribute-levels in the conjoint data. Specifically, to recover a vector of

OMCE estimates of attribute-level l1, we take z draws from the predicted posterior using a

“test" matrix which is identical to the training dataset, except each element in the column

corresponding to attribute l is set to the value l1.10 We then repeat this process, except

9We use a probit-specific version of BART that better handles the binary outcome typical of this type of
discrete-choice design. The probit outcomes are transformed back to probabilities prior to the computation
of OMCEs.

10In our software implementation, z = 1000. These draws are taken using a Gibbs Sampler, obtained through
a Monte Carlo Markov Chain (MCMC) backfitting algorithm. Chipman et al. (2010) show that, with
sufficient burn-in, these sequential draws converge to the posterior of the true data generating process
(p.275). Users can assess convergence using Geweke’s convergence diagnostic test available in the BART
R package (see §4.5, Sparapani et al. 2021).
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the value of this column is now set to l0, the reference category. This process yields two

separate matrices of dimensions z ⇥ N , which approximate the posterior distribution for

each observation for two separate attribute values respectively (l1 and l0). Subtracting

these two matrices yields a single matrix of predicted OMCE estimates – z per observation.

To recover a parameter estimate of the OMCE, we simply average these z predictions for

each observation to yield a vector of observation-level effects:

OMCE = ⌧̂ijkl =
1

z

⇣
f̂(Tijkl = l1, Tijk[�l], Xi)� f̂(Tijkl = l0, Tijk[�l], Xi)

⌘
.

Step 3 Finally, consistent with the logic outlined in Section 1, the IMCE estimates can

then be calculated by averaging the OMCEs for each individual i:

IMCE = ⌧̂il =
1

J ⇥K

KX JX
⌧̂ijkl.

Uncertainty estimation We also use the z⇥N matrix of predicted OMCEs from the BART

model to estimate the uncertainty both at the observation and individual level. Since our

estimating strategy is Bayesian, we implement a credible interval approach to capture the

parameter uncertainty. We take the 1�↵ posterior interval of the OMCE-level predictions.

To aggregate this interval to the IMCE level, we concatenate the posterior draws for each

OMCE estimate, and take the ↵/2 and (1� ↵)/2 quantiles. Given that the posterior distri-

bution is a random variable, this credible interval indicates the central 1� ↵ proportion of

the probability mass for the parameter’s posterior.

2.2 Simulation tests of the estimation strategy

Using Monte Carlo simulations, we find that our method effectively detects IMCE hetero-

geneity caused by heterogeneous preferences. We simulate a full conjoint experiment in

which subjects make choices between two profiles. Each profile contains three conjoint
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attributes that are randomly assigned one of two values: A1 = {a, b}, A2 = {c, d}, A3 =

{e, f}. To induce heterogeneity, we define subjects’ preferences over attribute levels as a

function of two individual-level covariates varying this relationship across attributes. The

first covariate c1 is a binary variable drawn from a binomial distribution of size 1 with

probability 0.5; the second covariate c2 is a continuous variable drawn from a uniform

distribution with bounds [-1,1].

We define the change in utility as a result of observing the second level for each at-

tribute as follows:

�UA1 ⇠

8
>><

>>:

N (µ = 1, � = 1), if c1 = 1

N (µ = �1, � = 1), otherwise.

�UA2 ⇠N (µ = |c2 � 0.2|, � = 1)

�UA3 ⇠N (µ = 0, � = 0.5)

We then simulate the conjoint experiment run on 500 subjects, for 5 rounds each, in

which individuals choose between 2 profiles. For each observation, we calculate the utility

for subject i given profile j in round k as:

Uijk = I(A1 = b)⇥�UA1 + I(A2 = d)⇥�UA2 + I(A3 = f)⇥�UA3 + ✏,

where ✏ ⇠ N (0, 0.0005) adds a small amount of noise to each utility calculation (to prevent

exact draws). For each round j that subject i sees, the profile that yields the higher change

in utility is “chosen" (Y = 1), and the other is not (Y = 0). This mimics the technical

dependence between observations that forms the basis of the discrete choice design.

Given this specification, the BART estimation strategy should predict heterogeneous

IMCEs for the first two attributes (A1 and A2) but not for the last attribute (A3). Since

tree-based ML methods operate by partitioning the data, our strategy should easily identify

the dichotomous IMCE relationship with c1. The IMCEs for A1 should be positive when
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Figure 2. Detecting heterogeneity in IMCEs using simulated conjoint data derived from
preferences over profiles
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Point estimates of the IMCEs for 500 subjects shown with 95% credible intervals (described in Section 2.1)

c1 = 1, but negative when c2 = 0. We should observe no correlations between c1 and

A2. The covariate c2 poses a harder challenge for our estimation strategy for two reasons.

First, subdivision of the data cannot perfectly partition the IMCEs since the covariate is

continuous. Second, the defined relationship is more complex and asymmetric over the

covariate’s range. The strongest positive effects should occur for negative values, and the

weakest effects when c2 = 0.2. We anticipate no correlation between c2 and attribute A1

or A3.11

Figure 2 demonstrates the results of this experiment, colouring predicted IMCEs by

the values of c1. Our strategy effectively discovers heterogeneous IMCEs when the het-

erogeneity over preferences is a function of a binary variable – the positive and negative

preferences perfectly correspond to the values of this covariate. Conversely, in the third

facet, there is no indication of heterogeneity in the predicted IMCEs nor correlation be-

tween c1 and the size of effects.

11In Appendix C4 and E1 we replicate this exercise using the Zhirkov (2022) OLS and Athey et al. (2019)
causal forest methods, respectively.
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Over 100 simulations of this experiment, we observe an almost perfect correlation

between c1 and A1 (r̄ = 0.998), but negligible correlations between the same covariate

and A2 and A3 (r̄ = 0.004 and �0.003 respectively). Similarly, the correlation between c2

and A2 is substantive but, as expected, the magnitude is moderated by the non-linear and

asymmetric relationship imposed (r̄ = �0.557). Again, there are negligible correlations for

A1 and A3 (r̄ = 0.000 and 0.074 respectively).

In Figure G1 in the Appendix, we demonstrate that the heterogeneous IMCEs for A2

correlate with the continuous covariate c2, as expected. Under a conventional, subsetting

strategy, the analyst would likely also note that conditional AMCEs for A2 do not covary

with c1. However, subsetting based on c1 would not indicate that there is substantial

heterogeneity to the marginal component effect. We conjecture that as the complexity of

the covariance between covariates and IMCEs increases, it becomes harder for the analyst

to adequately pre-specify models that would be capable of detecting this heterogeneity.

We extend this discussion of the simulated performance of our method in the Appendix.

In Section C1 we demonstrate that the estimation method exhibits good predictive accu-

racy when IMCEs themselves are simulated across DGPs of varying form and complexity.

We also find that our variance estimation strategy exhibits good coverage (Section C2). Fi-

nally, we test whether RMCEs can be used to detect whether effects are serially correlated

by round (a violation of a conjoint experiment’s assumptions) in Section C3.

2.3 Applied test of BART-estimated AMCEs

Under the various conjoint design assumptions, parameter estimates of the AMCEs from

a linear probability model (LPM) are unbiased (Hainmueller et al. 2014). In Section 1,

moreover, we note that the AMCE estimand can be considered the average of the IMCEs

across subjects. Therefore, if our our estimation strategy is performing well, we expect that

averaging the BART IMCEs will be very similar, if not the same as, the unbiased AMCEs
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estimated from a LPM.

As an applied sense check, we test this expectation empirically using data from two

conjoint experiments. First, we analyse the archetypal conjoint experiment by Hainmueller

et al. (2014) where U.S. subjects made a series of forced-choices between two profiles de-

scribing potential immigrants, indicating which they would prefer to admit. The attributes

presented in the profiles reflected traits hypothesized to matter in immigration decision

making, including the migrant’s profession, country of origin, and language skills. Second,

we analyse the previously discussed COVID-19 vaccine conjoint by Duch et al. (2021).

Figure 3 plots the point estimates of each (non-reference) attribute-level using our

BART strategy and those of the conventional LPM approach, for both datasets. In both

cases, and for every parameter, we see that the predicted effects are very similar. These

results are strong prima facie evidence that the BART model is appropriately estimating

the response surface: the individual-level effects do, in practise, aggregate correctly to the

AMCE.12

Figure 3. Comparison of conventional GLM-derived AMCE to AMCEs recovered from the
BART estimated IMCEs
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12In Appendix D, we provide further estimation details for the Hainmueller et al. (2014) data, and Appendix
Tables D1 and D3 report the LPM and cjbart coefficient estimates as well as the percentage differences
between them.
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2.4 Non-independent randomisation of attribute-levels

So far, we have assumed that attributes are completely and independently randomised,

which is by far the most common type of conjoint design in practise (de la Cuesta et al.

2022). However, as others have noted, it is possible and informative to consider non-

uniform distributions of profiles that better correspond to real-world profile distributions

(Hainmueller et al. 2014; Bansak et al. 2021; de la Cuesta et al. 2022). This adaptation

is also possible at the individual level, and we define the population-weighted quantity of

interest as the “population-IMCE" (pIMCE).

We approach this challenge as a post-hoc exploratory analysis of existing conjoint data,

similar to the model-based approach discussed by de la Cuesta et al. (2022). As before,

we first use the observed experimental data to train a BART model. Adapting the pre-

vious strategy, we then predict a full set of counterfactual potential outcomes for every

combination of the L � 1 attributes in the design, for each subject (holding constant the

individual-level covariates), and estimate the corresponding OMCEs by setting the lth at-

tribute to l1 and l0 respectively.

We then recover the pIMCE by taking a weighted average of the predicted OMCEs,

using researcher-specified marginal probabilities for the L � 1 attributes. In effect, this

marginalizes the IMCE over the profile distributions at the individual-level. The weight

for a specific partial profile (ignoring the Lth attribute) is calculated as the product of the

marginal probabilities for every other attribute-level in the profile:

wTijk[�l]
= P (Tijk[�l]) =

Y

l0 6=l

P (Tijkl0).

Since our BART strategy takes z draws from the posterior, we calculate the weighted

sum over the OMCEs for each draw separately, and then take the average over these pre-
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dictions to generate our pIMCE estimate:

pIMCEil = Ez

 X

Tijk[�l]2Tijk[�l]

(⌧̂ijkl ⇥ wTijk[�l]
)

�
,

where the subscript z indexes draws from the model posterior, and Tijk[�l] is the set of

possible attribute-level combinations across the L� 1 other attributes.13

While this adaptation is relatively straightforward from a theoretical perspective, it

comes at a computational cost. As the number of attributes (and attribute-levels) increases,

the number of potential outcomes that need to be predicted inflates rapidly. Compared to

the standard strategy, the number of predictions increases by the factorial of the number

of levels for the L� 1 other attributes in the design. Researchers will want to narrow their

analysis to specific population profiles, otherwise the computational demands will quickly

become infeasible. We present an example of estimating pIMCEs in Appendix F.

3 Comparing Sources of Heterogeneity

A particular attraction of heterogeneous effects estimation is that we are able to examine

whether treatment effects differ at the individual-level. To date, however, researchers have

lacked principled methods of characterising this heterogeneity. In this section, we propose

two tools researchers can use to systematically recover indicators of which covariates are

driving heterogeneity in the marginal treatment effects and the interactions between vari-

ables. Both tools rely on tree-based learning methods to group the predicted IMCEs based

on covariate information. In general, tree-based modelling approaches are well suited to

this type of problem since they work by partitioning observations into clusters where the

differences in outcomes between members of the same cluster are as small as possible

(Breiman et al. 1984).

13Similar to the standard strategy, we also recover credible interval uncertainty estimates by taking the ↵
2

and 1� ↵
2 quantiles over the weighted distributions.
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We first introduce a standardised variable importance (VIMP) measure that summarises

how well different covariates predict each distribution of IMCEs. This measure can be used

to explore the potential sources of heterogeneity in the marginal component effects sys-

tematically across all attributes in the experiment. Second, we show how single regression

trees can be used to better inspect the determinants of heterogeneity for specific attribute-

levels of interest. This second step builds on the VIMP analysis by using the tree’s decision

rules to identify clusters, defined by subject covariates, that best define this heterogeneity.

For each cluster, researchers can recover the conditional marginal component effect and

thus analyse the extent of heterogeneity in the treatment effects.

3.1 Random forest variable importance

Our first tool summarises which covariates matter for predicting differences in the IMCE

distributions for all attribute-levels in a conjoint experiment. We use random forests to es-

timate the relationship between the predicted IMCEs and subject-level covariates. For each

attribute-level, we train a random forest to model the heterogeneity in the predicted IMCE

distribution using subjects’ covariate information as the predictor variables. Once each

model has been trained, we recover variable importance measures (VIMPs) – a common

form of model analysis for tree-based methods – to understand which covariate dimensions

are most useful for partitioning the data. In turn, these variables can drive subsequent

analyses which we present in Section 3.2.

In general, VIMP measures work by measuring the degradation in model performance

when noise is added to a predictor variable. A larger drop in performance is indicative that

the variable in question is more important for predicting the outcome. For our purposes,

we use VIMP scores to measure how well the included subject covariates predict each

vector of IMCEs. Higher importance scores suggest that partitioning the IMCEs on these
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variables is informative.14

The importance of subject-level covariates may differ dependent on the specific attribute-

level in question. We therefore recover separate VIMP scores for each combination of

attribute-level and subject covariate, allowing us to plot a heatmap of variable importance

across the design as a whole. In Section 4 we demonstrate how this schedule of VIMP

scores can be analysed to understand what drives heterogeneity for each attribute-level in

the conjoint experiment.

3.2 Single decision tree partitioning

The random forest VIMP tool compares how well subject-level covariates predict each

IMCE distribution. Given its reliance on random forests, however, it is less useful for sub-

stantively interpreting the partitioned IMCE space. The final model contains many trees,

where each individual tree only considers a random subset of variables and a bootstrap

sample of the data. We therefore propose a complementary tool that fits a single decision

tree on an attribute-level of interest. Like the random forest model, the single-tree model

recursively partitions the vector of IMCEs using a matrix of covariate information. Unlike

the random forest method, since only one model is fit the individual splitting rules from

this tree can be directly interpreted and used to inspect the heterogeneity in the IMCEs.15

Single tree models typically fit many splits to the data, making interpretation difficult.

This feature reflects the inherent trade-off in machine learning methods between model

complexity and the risk of mispredicting observations. In other words, a more complex tree

may reduce prediction error (in training) but the incurred complexity reduces the variance

of the model (leading to overfitting). Therefore, to ensure the tree is interpretable, we

14We use the Breiman-Cutler approach, which randomly permutes the predictor variable and measures the
standardised difference in prediction error when using the original data compared to this permuted data.
Taking advantage of recent developments in VIMP theory, and noting earlier critiques of bias in VIMP
measures (Strobl et al. 2007), we recover bias-corrected variance estimates of these VIMP scores using
delete-d jackknife estimation (Ishwaran and Lu 2019).

15A similar strategy has been pursued by Hahn et al. (2020).
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follow the convention of “pruning" the fit model. Since the partitioning is recursive and

“greedy", earlier splits in the tree are those that provide the greatest leverage over differ-

entiating observations. By removing later splits, pruning has the effect of paring back the

cluster definitions (i.e. the combination of decision rules) to a more parsimonious level.

In practice, trees are pruned by setting a complexity parameter. In the case of contin-

uous outcomes, this determines how much of an increase in the overall R2 of the model

is needed in order for a split to be kept in the model. In our experience, a complexity

parameter of about 0.02-0.04 is sufficient to constrain the tree’s depth to an interpretable

level – about two or three degrees of partitioning.

Post-pruning, researchers can use the fit model to describe the underlying heterogene-

ity in the IMCE distribution. The terminal nodes reflect the conditional average marginal

component effects defined by the splitting rules in the tree. This is similar to estimating

marginal component effects for specific subgroups. Unlike manual subset analyses, how-

ever, the clusters are discovered during model fitting. This feature is particularly useful

since the tree, splitting sequentially on multiple variables, may define complex groups. For

example, it may find a stronger effect for young and ideologically left-leaning subjects,

compared to those who are left-leaning but older. We illustrate this approach in the next

section.

Comparing across methods While both the VIMP and decision tree methods share a

similar partitioning logic, these methods could yield different insights: the VIMP analy-

sis may, for example, highlight an additional feature not used in the single decision tree.

These methods are complementary, and aim to extract as much information from the ex-

perimental data as possible. If, and where, inconsistencies do arise, that can be a signal

that the researcher does not have strong or robust evidence of the sources of heterogeneity.
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4 Heterogeneity in a multi-national conjoint experiment

In this section, we consider an application of the framework and estimation strategy out-

lined in Sections 1 and 2. We analyse heterogeneity in a very large conjoint experiment

that encompasses a diverse group of subjects surveyed from 13 countries, and then com-

pare our approach to a recent alternative strategy proposed in Zhirkov (2022).

Detecting heterogeneous effects The conjoint data are from the Duch et al. (2021)

multi-national study on COVID-19 vaccine prioritization. Subjects choose which of two

hypothetical individuals should be given priority for a COVID-19 vaccine. Each profile dis-

plays five attributes – the recipients’ vulnerability to the virus, likely transmission of the

virus, income, occupation, and age – and all levels are completely randomly assigned. Sub-

jects make a total of 8 choices in the experiment. The experiment also recorded subjects’

country of origin, age, gender, ideology, income, education, hesitancy over vaccination,

and measures of their willingness to pay for a vaccine.

The original study, using subgroup analysis, finds consistent AMCEs across all the coun-

tries surveyed. Nevertheless, it is reasonable to suspect that these AMCEs may mask

heterogeneity with respect to individual-level covariates. This experiment is particularly

suited to a study of heterogeneous effects, since with approximately 250,000 observations

in total and harmonised covariate information across countries, there is ample data to

model complex relationships. We train a BART model on all five conjoint attributes and

the set of covariate information for each profile using cjbart, using all observations from

the 13 countries surveyed in the experiment. We recover a schedule of IMCE estimates for

each attribute-level.

With multiple covariates, however, systematically identifying the drivers of heterogene-

ity is difficult. This is particularly acute in the case of conjoint experiments where we have

separate IMCE vectors for each attribute-level, which means researchers are faced with
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a dense schedule of predicted effects. We address this challenge by using the tree-based

measure of variable importance, as discussed in Section 3.1.

We use our proposed VIMP tool as the first step in identifying plausible sources of

heterogeneity in the schedule of IMCEs estimated from the Duch et al. (2021). The method

estimates a standardised importance score for each combination of the 10 covariates and

16 attribute-levels in the conjoint design. Figure 4 provides a graphical summary of how

well each covariate predicts the attribute-levels in the Duch et al. (2021) conjoint. Clearly,

the country of a respondent is a highly predictive factor across most attribute-levels in

the model. This is perhaps unsurprising, given the diversity of contexts considered and

differing levels of COVID-19 infections at the point the experiment was fielded.

Most interestingly, some subject-level variables appear to condition IMCEs for specific

attributes. For example, while subjects’ age is not a particularly important predictor of

heterogeneity across most attributes, it is very predictive when considering the age of the

potential vaccine recipient. In general, this suggests that whether one is willing to prioritise

individuals based on age may well be driven by one’s own age (which we explore in more

detail below), and second that this is perhaps most important for the 65 year old label

where the risks of COVID-19 are more severe. Similarly, ideology appears particularly

important when partitioning the IMCEs related to the potential vaccine recipient’s income.

This result accords with conventional expectations about the relationship between political

ideology and service provision, and highlights that one’s own ideological position appears

to predict how willing one is to prioritise those on low incomes.

Given the results from the VIMP summary measure, we can use a single pruned decision

tree (as described in Section 3.2) to inspect this heterogeneity in more detail. On the

basis of the variable importance heatmap in Figure 4, for example, we would expect that

subjects’ age is used to partition the IMCE vectors for prioritising vaccine recipients of

different ages.
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Figure 4. Variable importance matrix having estimated separate random forest models
on each attribute-level in the model. Higher values indicate variables that were more
important in terms of predicting the estimated IMCE distribution
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Figure 5 presents a single decision tree for the IMCEs related to prioritising vaccines

for “65 year olds". Note first that the split confirms the VIMP analysis results in Figure 4

that identify subject’s age as an important source of heterogeneity for this attribute-level:

older subjects (over the age of 37) exhibit a predicted average marginal effect (0.11) that

is about 20 percent larger than younger subjects. Notably, moreover, this partitioning

strategy captures more complex interactions between covariates.The smallest IMCEs are

defined by younger subjects (< 37) in India and Uganda. Conversely, the strongest effects
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Figure 5. Pruned decision-tree of predicted IMCEs for prioritising vaccines for those “65
years old", using subject-level covariate information to partition the vector of individual-
level effects.
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are for those subjects older than 37 resident in the UK, US, and France (countries with

older-aged populations), and those resident in other countries who are above the age of

69 (and thus closest in age to the profile age).

Finally, we demonstrate one further way of summarizing these results visually by plot-

ting the full ordered distribution of IMCEs for a given variable against the corresponding

distribution of a covariate. Figure 4 suggests that subjects’ ideology is an important predic-

tor of IMCEs for the income-related attribute-levels in the conjoint experiment. In Figure

6, therefore, we visualize this particular relationship by plotting the IMCEs against a his-

togram of subjects’ self-reported ideological position.

As Figure 6 shows, there is quite clear and distinct heterogeneity. Smaller IMCEs
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Figure 6. Comparison of IMCEs for the “Lowest 20% income level" attribute-level ordered
from smallest to largest and corresponding histogram of individuals’ self-reported ideology.
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(around the 0.01 mark) are individuals whose ideology is right-leaning (at or above 6

on a 0-10 scale). In contrast, larger IMCEs are predicted for those who are typically more

left-leaning. Clearly, however, ideology does not play a perfect role. Within these two por-

tions of the distribution, varying degrees of ideology are more uniformly distributed, and

at the very right of the IMCE distribution other factors appear to drive a further uptick in

the predicted IMCE, to approximately four times the effect size of right-leaning subjects.16

16To check for overfitting, we re-estimated these models using smaller random subsets of the data. Appendix
Figure G2 demonstrates that despite fewer observations these models also identified similar correlations
between the income IMCEs and subjects’ ideology, with left-leaning subjects typically having higher AMCEs
on average (and vice versa).While evidence of overfitting is low, there is some evidence of sensitivity to
the training batch: the fourth and fifth random subsets have higher predicted effects overall, and the
distribution of IMCEs spikes upwards more for batch 3 at the left ideological extreme compared to the
other training batches. Separately, in Appendix Figure G3, we show an example from the same model of an
attribute-level where there is no apparent correlation between ideology and the substantial heterogeneity
observed in the IMCEs.
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Comparison to OLS-based approach To demonstrate the comparative performance of

our approach, we also estimate IMCEs using an alternative strategy proposed recently by

Zhirkov (2022). In short, this method estimates separate OLS regression models for each

subject separately. The resultant coefficients are unbiased estimates of the same IMCE

quantity we outline in Section 1.

Our method finds a strong correlation between individuals’ ideology and the predicted

IMCEs for the low income attribute-level of the Duch et al. (2021) experiment. Under

the Zhirkov (2022) OLS strategy, we expect to see a similar result – both in terms of the

distribution of IMCEs and its correlation with individuals’ self-reported ideology.

Two practical features of the regression approach complicate this analysis using OLS.

Since each subject completed eight rounds of the conjoint experiment (a number we think

is quite typical for a conjoint design), each model has only 16 observations (2 profiles per

round) and thus the individual models will be imprecise. Zhirkov (2022) acknowledges

this limitation, and notes that the OLS approach requires subjects to rate closer to 30

profiles in total. While this large number of activities may be feasible in principle, we

rarely see this number of profiles in practice.

Moreover, even if the number of observations approaches 30, Zhirkov (2022) recom-

mends using interval rating scales rather than the binary, forced-choice outcome. While

many conjoint experiments implement both rating and forced-choice scales of measure-

ment, we believe the forced-choice outcome is the most interesting aspect. It allows us

to think of the effects directly in terms of marginal probabilities, and thus to consider the

behaviour of subjects (a choice of candidate) rather than just an attitude (the subjects’

rating of two candidates).17

17This is consistent with the Bansak et al. (2022) finding that the estimated AMCEs from forced-choices of
political candidates map well to actual election outcomes. Moreover, in Section C4 of the Appendix we
present simulation evidence that even when we adapt designs to meet this requirement, heterogeneity in
preferences is less well detected using interval rating scales.
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Figure 7 displays the ordered distribution of estimated IMCEs using this OLS strategy,

plot against a histogram of individuals’ self-reported ideology. The OLS approach yields

5,369 IMCE estimates outside of the range of possible changes in probability. We exclude

these estimates from our analysis, leading to a 34 percent reduction in the number of

IMCEs we can inspect.18 We do not observe the same correlation as in our BART estimation.

The correlation coefficient between the IMCEs and ideology in the OLS case is negligible

and statistically insignificant (r = �0.01, p = 0.20) compared to a strong correlation

with respect to BART (r = �0.75, p < 0.001). The OLS strategy does not seem to have

modelled the data well: The distribution of IMCEs is symmetric centred on zero with tails

that contain implausibly large effects.

Figure 7. Comparison of estimated IMCEs using the OLS method proposed in Zhirkov
(2022), on the “Lowest 20% income level" attribute-level within Duch et al. (2021)
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While these are not ideal conditions for the Zhirkov (2022) approach, our vaccine ex-

periment resembles a typical conjoint design with 16 observations per individual. Our OLS
18Of these individuals, only 5935 uncertainty estimates were parametrically recoverable.
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comparison confirms Zhirkov’s (2022) recommendation that the OLS method should only

be implemented for conjoints with at least 30 observations per individual. An advantage

of our ML-based approach is that it leverages all observations in the data and hence our

estimation strategy is less reliant on having many observations per experimental subject.

Perhaps most importantly, our approach is able to detect and capture how subject co-

variate information modifies the size and direction of these marginal component effects.

The OLS method rests on the fact that this heterogeneity is implicitly detected when the

marginal effects are modelled for each individual separately. In our proposed method,

since the trees in the BART model can identify interactive effects between the supplied

covariates and the attribute-levels, it can model these effect modifiers. The result, in this

case, is that our method identifies the correlation between subjects’ ideology and their

treatment of low-income vaccine recipients in a way that the OLS strategy does not.

5 Discussion and Conclusion

The attraction of conjoint experiments is a rich data generating process that allows us

to tease out the choice characteristics that shape individuals’ decision making. Conjoint

experiments are fast becoming one of the dominant methods within the social sciences.

Alongside this rise in use, a rich methodological literature is developing that explores how

advances in conjoint estimation can enhance its informative value (Jenke et al. 2021; Ham

et al. 2022; Goplerud et al. 2022; de la Cuesta et al. 2022).

We make a small contribution to this wider development, by clarifying how the con-

joint design relates to the structure of the data collected, and how we can leverage the

nature of this data generation to estimate heterogeneous treatment effects across conjoint

attributes. Heterogeneity can be characterized in terms of a set of nested, causal estimands

that correspond to the repeated observations across individuals, rounds, and profiles of the

conjoint design. Using machine learning tools, we show how to estimate heterogeneous
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treatment effects in the conjoint design using the potential outcomes framework. Our

strategy allows researchers to assess treatment effect heterogeneity in a straightforward

and flexible manner.

We suggest that machine learning is particularly useful given its ability to identify more

complicated relationships between predictor variables without the need for researchers to

specify these a priori. By reducing researcher degrees of freedom, our proposed general

method provides a more robust means of analysing heterogeneity compared to ad hoc

subgroup analyses. Moreover, since our estimation strategy leverages all observations in

the modelling stage, our method has greater statistical power than approaches that rely

on estimating separate subset models.

As a consequence, when researchers use forced-choice outcomes, have relatively few

observations per subject, or many substantively important values per attribute, we believe

the BART method is more appropriate than OLS-based alternatives. There are, however, a

smaller subset of conjoint designs – where the outcome is a rating, there are many profile-

observations per subject, and few substantively important values per attribute – when

either OLS or BART strategies are appropriate. In these cases, researchers should consider

the trade offs that both methods entail.

Therefore, notwithstanding its advantages, there are also limitations to our estima-

tion strategy. Principally, our BART modelling strategy assumes that conditional on the

observed covariates, outcomes depend only on the assigned treatment values. In other

words, two individuals with identical covariate profiles and the same attribute-level as-

signments would get assigned the same predicted OMCEs. This is, in part, a limitation of

the underlying BART algorithm, with limited development of cluster-specific estimation.

Future research may wish to implement recent advances in random intercept modelling to

better capture these latent effects (see Tan et al. 2018).

More generally, and as with many ML methods, overfitting the training data can lead
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to poor out-of-sample generalisability. As we have pointed to, researchers can assess these

issues by, for example, estimating separate ML models on subsets of the data to ensure the

findings replicate. Even when the model is not overfit, these methods can be quite sensitive

to the data: particularly with smaller training sets. Moreover, ML models can be sensitive

to the choice of hyperparameter values. As we note earlier, we chose BART because of its

greater resilience to these issues: BART predictions are relatively stable over hyperparam-

eter choices, and the Bayesian priors provide strong regularisation to prevent overfitting

(Chipman et al. 2010; Hill et al. 2020). Other ML implementations, for example causal

forests, offer separate tuning and validation algorithms, and we recommend researchers

take these procedures seriously.

To accompany this paper, we provide a new R package, cjbart, that allows researchers

to use our method on their experimental conjoint data. However, our proposed meta-

strategy could be used with many other forms of modelling. For example, researchers

may wish to use random forests or neural networks instead, and we demonstrate one such

alternative example in Section E of the Appendix.

Finally, generating individual-level estimates of treatment effects is only half the battle.

Once researchers recover these individual-level estimates, the challenge is to identify the

most significant sources of heterogeneous treatment effects. We provide two complemen-

tary tools that help researchers make sense of the estimated distribution of individual-level

effects. We demonstrate how VIMP measures can be used to summarise which variables

are most important for predicting heterogeneity in the IMCEs. We then show how single

regression tree models can be used to partition IMCE distributions into clusters, where

the decision rules provide information about which covariates define those clusters. This

paper also shows how these results can be visualized to aid analysis.
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A Further information on estimands and estimates

Table A1 shows how the estimands relate to the structure of conjoint datasets. Each esti-

mand is a nested quantity that relates to the structure of the observed data collected via

conjoint designs. As such, each estimand covers increasingly aggregate portions of the

data.

Table A1. Nested causal quantities in a conjoint experiment

Subject Round Profile Attribute . . . y yl0

1 1 1 A . . . 1 0
 

OMCE
�

RMCE
9
>>=

>>;
IMCE

9
>>>>>>>>=

>>>>>>>>;

AMCE

1 1 2 B . . . 0 1
1 2 1 A . . . 0 0
1 2 2 A . . . 1 0
...

...
...

... . . . ...
...

N 2 1 B . . . 0 1
N 2 2 A . . . 1 1

The above example reflects the structure of observations in the data collected from a conjoint experiment
where the lth attribute has two possible levels (“A" and “B"). y is the observed forced-choice outcome in the
experiment. yl0 is the counterfactual unobserved outcome where the lth attribute is switched. The various
causal estimands relate to different nested sets of observations within the data.

Relaxing the assumption of complete randomisation The main paper specifies the

potential outcomes under the assumption of complete randomisation. Statistically, this

assumption means that every possible combination of values across attributes is equally

likely and there are no prohibited combinations. Not only is this assumption satisfied in

many applications, but it also considerably simplifies the estimation. In some scenarios,

however, researchers may impose restrictions to prevent implausible combinations of at-

tributes. For example, if each profile is a political campaign, the average donation to a

campaign could not exceed the total amount of donations.
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In these cases, as shown by Hainmueller et al. (2014), the AMCE estimand must condi-

tion on the possibility that the remainder of the treated profile and the vector of other pos-

sible treatment options are in the intersection of the supports (T ) of p(Tijk[�l] = t,Ti[�j]k =

t|Tikl = l1) and p(Tijk[�l] = t,Ti[�j]k = t|Tikl = l0), where t is the vector of all other attribute

values for the jth profile in round k, and t is the set of possible vectors of all attributes in

the other profile.

In our framework, by relaxing this assumption, the IMCE estimand becomes:1

⌧il = E
⇥
Yijk(tl = l1, · · · )� Yijk(tl = l0, · · · )|(Tijk[�l],Ti[�j]k) 2 T̃ ,Si

⇤
,

the RMCE becomes:

⌧ikl = E
⇥
Yijk(tl = l1, · · · )� Yijk(tl = l0, · · · )|(Tijk[�l],Ti[�j]k) 2 T̃ ,Si,Rik

⇤
,

and the OMCE becomes:

⌧ijkl = E
⇥
Yijk(tl = l1, · · · )� Yijk(tl = l0, · · · )|(Tijk[�l],Ti[�j]k) 2 T̃ ,Si,Rik,Pijk

⇤
.

This logic follows from the fact that these quantities are conditional variants of the

AMCE, which itself is conditioned on the joint support of the probabilities of the two

conditional potential outcomes.

B Further information on the BART estimation strategy

As we note in the main text, Bayesian Additive Regression Trees (BART) are a tree-based

machine learning strategy for prediction and classification, developed by Chipman et al.

(2010). In this section, we provide a more detailed explanation of the algorithm for inter-

ested readers.

The underlying principal of BART is that the outcome of interest y can be decomposed
1For the sake of notational simplicity, we replace Tijk[�l],Ti[�j]k in each of the potential outcomes with “· · · ".
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into smaller parts. Therefore, an individual outcome yi can be described as a function of

covariates xi such that,

yi = f(xi) ⇡
TX

t=1

gt(xi) + ✏, ✏ ⇠ N (0, �2),

where t indexes a set of functions gt that in summation approximate the true data-generating

function f .

In the BART model, each gt is a tree-model, where the input data is recursively subset

using a series of splitting criteria. We call each point where the data is split into two

subsets a non-terminal node. Each non-terminal node has two child nodes, which may

themselves either be non-terminal (i.e. they split the data again) or terminal. A terminal

node represents a final subset of the data, determined by the conjunction of splitting rules

of its ancestors.

The Bayesian aspect of these tree models comes from the fact the model assumes a

prior over the structure of each tree (i.e. the number, position, and splitting criteria of

non-terminal nodes), the terminal node parameters themselves, and an independent error

variance prior. With regards to the tree structure, for example, whether any given node is

non-terminal is determined by the prior probability,

↵(1 + d)��, ↵ 2 (0, 1), � 2 [0,1),

where ↵ and � are hyperparameters that can be specified by the researcher. The default

values set by Chipman et al. (2010) (↵ = 0.95, � = 2) are designed to heavily constrain

each tree so they are small, which helps prevent the model from overfitting (Hill et al.

2020).

The terminal-node parameters differ substantially from regular tree-based methods.

Unlike in conventional trees where the terminal node parameters of the tree are simply

the conditional expectations of the observations in that partition, in a BART model these
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parameters are defined as random variables. In particular, the prior for each leaf node (i)

in tree (j) is defined as:

µij = N (0, �2
µ), where�µ = 0.5/k

p
m,

where m is the number of trees in the model and k is a hyperparameter choice of the

researcher – Chipman et al. (2010) recommend a default value of 2, on the basis of cross-

validation evidence.

Finally, the error variance prior is drawn from an inverse-gamma distribution, with a �

parameter set using the data, to give a 90% (default) chance that the model will yield a

root mean squared error (RMSE) value lower than from an OLS regression.

There are, as a result of this prior specification, several hyperparameters that can be

specified by the researcher. As several authors note, the cross-validation exercises and

resultant default parameters provided by Chipman et al. (2010) are known to perform

well across a variety of contexts (Kapelner and Bleich 2016; Carnegie and Wu 2019; Hill

et al. 2020). That said, researchers can perform cross-validation of these parameters on

their specific dataset to see if they can achieve better performance.2

Since we sum these individual models, we do not want the models to predict the same

part of the variance of the outcome. Using the metaphor of a forest, we do not want

the canopy of the trees to overlap. Instead, each tree should “develop" (by growing or

shrinking) to cover only that part of the forest canopy not covered by the remaining trees

in the forest. During training, therefore, the algorithm sequentially updates each individual

tree model, conditional on the current performance of the rest of the trees. Specifically,

for each tree t, the model first calculates the “residual variance" (Rt) or the portion of the

2The cjbart package allows users to pass specific hyperparameter arguments (see Sparapani et al. 2021) to
the underlying BART algorithm via the cjbart(...) function.
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variance in y that is not explained by the remaining T � 1 trees:

Rt = y �
X

j 6=t

fj(x).

The algorithm then updates the structure of tree t in an attempt to improve perfor-

mance over Rt. To do so, the algorithm probabilistically makes one of the following

changes: splits a terminal node (p=0.25), removes the child nodes of a non-terminal

node (p=0.25), swaps split criteria across two non-terminal nodes (p=0.1), or alters the

splitting criteria for a single non-terminal node (p=0.4). Once a change has been made,

the model decides whether to keep this change using the Metropolis Hastings MCMC al-

gorithm.3

This process is then repeated for every other tree in the model, sequentially, and fi-

nally the model updates the error variance of the model as a whole (�) (Kapelner and

Bleich 2016). This entire process is repeated k times, as defined by the researcher. As

Chipman et al. (2010) note, since BART only updates one tree at a time, and in sequence,

it is only ever making small changes to the overall prediction, allowing it to fine tune its

performance via small additions and subtractions.

Post-training, predictions are made by taking draws from the model posterior. In prac-

tise, a “draw" is simply the result of passing a covariate vector xi down each tree in the

BART model and summing the results. More formally, a single draw from the trained BART

model can be denoted:

ŷ(b)i =
TX

t=1

ĝt(xi),

where the superscript notation indicates the bth draw from the trained BART model, and

ĝt is the final tth tree-model optimised via the training algorithm discussed above.

As Chipman et al. (2010) show, with sufficient training, the BART model will converge

3Note that this acceptance decision is constrained by Rj but also by the prior state of the tree being updated,
and hence is regularized by the initial priors over the tree structures.
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on the posterior distribution of the true data-generating function. Recall that since the

parameters of the model are random variables, repeated draws using the same covariate

vector will yield different predicted values. Therefore, to generate the final prediction ŷi,

we can repeat this process B times to get a posterior distribution of predictions (typically

1000) and then take the average:

ŷi =
1

B

BX

b=1

ŷ(b)i ,

The set of posterior draws, moreover, can be used to quantify the uncertainty of the

estimate, as discussed in Section 2.1 of the main paper.

C Simulation protocols and further details

C1 IMCE prediction

To test the accuracy of the IMCE predictions, we simulate datasets with two binary at-

tributes where the IMCE is defined with respect to a series of covariates, and across simu-

lations we vary the relationship between these covariates and the IMCE. Since we wish to

benchmark the performance of the model against "known" IMCE values for an attribute,

which crucially is not the change in probability of choosing one profile over another pro-

file, in this simulation exercise we assume independence between all observations. This is

very similar to the assumptions made in a conventional conjoint experiment, from which

the AMCE (and as we argue IMCE) are recovered. Hard-coding this independence into the

data-generating process allows for better control over the size and shape of heterogeneity.

To illustrate this strategy, suppose we observe two covariates – c1 and c2 – that are in-

variant at the individual-level, and randomly assign to each observation two dichotomous

attributes. The first attribute X1 takes values a or b, and the effect of being presented b over

a is the difference between the two individual-level covariates (i.e. ⌧X1 = c1� c2). In other
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words, the marginal component effect of b is heterogeneous, and dependent on individual-

level characteristics. The second attribute X2 takes values c or d, and the marginal effect

of d over c is invariant across individuals. Taken together, we get the following schedule of

IMCEs:

Table C1. Hypothetical correlation between IMCEs and two covariate values: c1 and c2 are
randomly drawn from uniform distributions

i c1 c2 ⌧X1 ⌧X2

1 0.1 0 0.1 0.1
2 0.25 0.05 0.2 0.1
3 0.15 0.15 0 0.1
...

...
...

...
...

I 0.05 0.25 -0.2 0.1

We can then generate an assignment schedule by sampling at random the attribute lev-

els for I⇥J observations i.e. attribute-level assignments across J rounds of the experiment

on I individuals. Note here that, since we pre-define the IMCEs, we do not sample two

observations per round – since, the IMCE does not reflect the probability of choosing one

profile over another.

Suppose the probability of choosing the profile is calculated as:

P (Yijk = 1) = 0.5 + I(X1 = b)⌧X1 + I(X2 = d)⌧X2 .

Given these probabilities, for each individual-round-profile, we have a separate pre-

dicted probability of that profile being "chosen", i.e. an observed outcome of 1. Table C2

presents an example of how these probabilities would be calculated given random assign-

ment of attributes across rounds, and the pre-defined IMCEs in Table C1.

Given Tables C1 and C2, we train the BART model on the actual attribute-level assign-

ments, the observed covariates, and the outcome:

The BART model then estimates the OMCEs (⌧ijk) by making predictions of Y when X1
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Table C2. Random attribute-level assignment, and calculation of probability

i j X1 X2 Calculation Prob Y

1 1 a c 0.5 + 0 + 0 0.5 0
1 2 a d 0.5 + 0 + 0.1 0.6 1
...

...
...

...
...

...
...

I J b c 0.5 +�0.2 + 0 0.3 0

Table C3. Training data for the BART model

i c1 c2 X1 X2 Y

1 0.1 0 a c 0
1 0.1 0 b c 1
1 0.1 0 a d 1
...

...
...

...
...

...
I 0.25 0.05 b c 0

is set to b for all observations and when it is set to a, and deducting these two values, as

demonstrated in Table C4.

Table C4. Calculating the OMCE by deducting the predicted probabilities under the as-
sumption of different attribute-levels

i Ŷ |X1 = b Ŷ |X1 = a b⌧ijkl
1 0.63 0.5 0.13
1 0.71 0.6 0.11
...

...
...

...
I 0.29 0.5 -0.21

Finally, the IMCEs are recovered by averaging the predicted OMCE across observations

for the same individual. For example, for i = 1 the predicted IMCE is:

⌧̂il =
1

J ⇥ 2
(0.13 + 0.11 + ...) = 0.109...

Given we know the IMCE for this individual is 0.1, the prediction error for this specific

subject is ⌧̂il � ⌧il ⇡ 0.109 � 0.1 ⇡ 0.009. We use these prediction errors to assess the
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accuracy of the BART model and corresponding IMCE estimation strategy.

In our actual simulations, we complicate the DGP. We assume that each subject has

three observed covariates: c1 and c2 are continuous covariates drawn from a random uni-

form distribution between 0 and some upper bound of heterogeneity (denoted h); c3 is

a binary variable generated from a binomial distribution with probability = 0.5. We also

assume there is one unobserved covariate, c4, which is normally distributed across subjects

with mean 0 and standard deviation h. We randomly assign draws from each of these

random variables to the 500 subjects.

Table C5 summarises the six scenarios we consider. In short, simulations 1 and 2

consider heterogeneity as a linear function of two observed covariates, varying the size of

the heterogeneity parameter h. In simulation 3, treatment heterogeneity is largely random,

although some small component (20%) is a linear function of the two covariates, and in

simulation 4 heterogeneity is a function of a binary variable. In simulation 5 we simulate

heterogeneity as a function of a missing covariate, and induce some correlation between

an observed variable and this unobserved variable. Finally, in simulation 6, we consider

an exponential function of heterogeneity (testing the predictive flexibility of the BART

model).

For each of 100 iterations, we then generate the data by randomly assigning attribute

levels to 500⇥5 observations, where each set of five observations correspond to the choices

of a single subject. We calculate the predicted probability p of choosing each profile by

multiplying the individuals’ generated IMCEs by indicator variables for each of the two

binary attributes plus a constant of 0.5 (such that, short of any attribute information,

subjects are indifferent to the profile). We then draw binary outcomes from the binomial

distribution using these predicted probabilities.

For each simulation and each iteration, we calculate the mean absolute error (MAE)

between the BART models’ IMCE prediction and the “true" IMCE. Figure C1 plots the av-
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erage of each IMCE over 100 iterations, for each simulation specification. On average, we

find that the MAE is low across heterogeneity specifications. Both linear, binary, and het-

oregeneity as a function of an unobserved covariate all have mean errors of approximately

0.04 to 0.05. When there is substantial random noise to the heterogeneity (simulation 3)

we find greater error, but still quite low. What we do notice is at the tails of the IMCE

distribution, the BART predicted effects are slightly conservative – as illustrated by the off-

diagonal tails of the comparisons. This should be expected – the data is sparser at these

points.

Figure C1. Average prediction error for each of 500 simulated IMCEs, varying the form of
heterogeneity and its relationship to observed covariates.

Simulation 4
MAE = 0.05

Simulation 5
MAE = 0.04

Simulation 6
MAE = 0.04

Simulation 1
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Simulation 2
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Each panel depicts a separate Monte Carlo simulation, varying how heterogeneity in the IMCEs are defined.
The individual points show the average error of the predicted IMCE across 500 iterations. The facet headings
also report the mean absolute error (MAE) for each IMCE across these iterations.
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C2 Coverage test

To test the uncertainty estimator we propose, we run Monte Carlo simulations in which

we pre-define the IMCEs for each subject and assess the coverage of the resultant credible

interval. As a naive comparison, we also estimate the variance of the IMCE as the simple

mean of the OMCE variances for each subject i, i.e.

\V(⌧il) =
1

J ⇥K

X \V(⌧ijkl)

These IMCEs are themselves defined as normal distributions, where the mean for each

subject is dependent on two subject-level covariates, and some standard deviation param-

eter �i:

⌧il ⇠ N ([C1i � C2i], �i)

C1i, C2i ⇠ Uniform(0, c),

where c and �i are parameters set in the simulation.

In each iteration of the simulations, we take j draws from the IMCE distribution of

each subject. These draws constitute the OMCEs for each subject in the experiment. We

simultaneously generate a completely randomised treatment assignment schedule, for the

IMCE attribute and one further dichotomous attribute where the IMCE is held fixed at 0.1

with zero variation. Given this assignment, we calculate the probability of picking each

profile given the drawn OMCEs. We finally transform the outcome into a dichotomous

measure by using the predicted probabilities to take draws from a binomial distribution.

After generating the simulated conjoint data, we calculate the cjbart predicted IMCEs

and record whether or not the predicted interval contains the true IMCE mean, for each

of the three variance estimation strategies. We repeat this process 500 times – generating

new simulated data from the same (fixed) schedule of true IMCEs. We recover a single
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coverage rate for each measure by calculating the proportion of times the simulated IMCE

contains the true population parameter for each hypothetical subject, and then take the

average across these proportions.

To test the robustness of the coverage rate across contexts, we vary the number of

subjects, rounds, the extent of IMCE heterogeneity, and the variance around the IMCE

distributions. Table C6 details the parameter settings used for each of the seven separate

simulation tests we run.

Table C7 reports the coverage rates for the two variance estimation methods. We find

that, across different scenarios, the Bayesian interval produces near nominal simulated

coverage rates. In general, coverage rates tend to be slightly conservative, estimating a

slightly wider interval than necessary. We find, however, that in scenarios 4 and 5 where

we increase the number of subjects, and where the naive estimator substantially underes-

timates the interval, the coverage of the Bayesian interval is closer to 0.95.
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Table C5. Sources of heterogeneity in IMCEs, for each of 6 separate simulations

Sim. fIMCE c Details

1 c1 � c2 cx ⇠ Uniform(0, h = 0.2) Effects are lin-
early heteroge-
neous between
�h and h

2 c1 � c2 cx ⇠ Uniform(0, h = 0.05) As above, but the
range is much
smaller

3 0.2(c1�c2)+0.8N (0, 0.125) cx ⇠ Uniform(0, h = 0.2) Covariates are a
weak predictor of
IMCE heterogene-
ity

4 If c3 = 1, N (0.2, 0.05);
else, N (�0.2, 0.05)

c3 ⇠ Binomial(1, 0.5) IMCE is either
positive or nega-
tive dependent on
observed binary
variable

5 c4 ⇠ Uniform(0, h = 0.2) c1 = 2 ⇥ I(c4 > 0.6h) �
N (0, 0.25)

IMCE is de-
termined by
unobserved co-
variate that also
influences c1.

6 c1 ⇥ 2c2 + c2 cx ⇠ Uniform(0, h = 0.2) Exponential rela-
tionship between
IMCE and covari-
ates
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Table C6. Simulation specifications testing the coverage rate of the confidence intervals

Sim. Subjects K c �i

1 500 5 0.25 0.05
2 500 5 0.05 0.02
3 500 10 0.05 0.02
4 1500 5 0.25 0.05
5 5000 5 0.25 0.05
6 500 5 0.25 Uniform(0.001, 0.05)
7 500 10 0.25 Uniform(0.001, 0.05)

Table C7. Comparison of coverage rates across the Bayesian and naive intervals.

Sim. Naive Estimate Bayesian

1 0.961 0.974
2 0.995 0.995
3 0.990 0.992
4 0.920 0.939
5 0.875 0.897
6 0.960 0.973
7 0.943 0.959
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C3 RMCE simulation test

In Section 1 of the main paper we note that the RMCE, the marginal effect of an attribute-

level within a specific round of the experiment, can be estimated as the average of the

OMCEs within rounds of the experiment for each individual, rather than over all obser-

vations pertaining to that individual. This quantity can be useful to check whether the

are any carryover or stability assumption violations that are necessary for valid conjoint

analysis.

To check this assumption, we can train our first-stage model including a round-number

indicator, allowing the model to learn any relationship between the outcome, effects, and

rounds of the experiment. We then assess whether the estimated RMCEs correlate with

the round indicator. If there are no carryover effects, in expectation the correlation should

be zero.

To demonstrate this logic, we conducted a simulation where we repeatedly generated

conjoint data where there either is or is not a serial correlation to the marginal effects of

attribute-levels across rounds. Our simulated conjoint experiment contains three attributes

(A, B, and C), each with two-levels (a1, a2, b1, etc.). Each experiment is run for 10 rounds

and 250 subjects, with two profiles per round, and we simulate 100 separate experiments.

Within each round of each experiment, we define two sets of utility calculations to

determine the forced-choice between profiles. In the "round-effect" scenario, the total

utility of the subject i from profile j in round k is defined as:

URound-effect
ijk =N (0, 0.001)

+ 0.5r ⇥ I(Aijk = a2)

+ (0.6� 0.1r)⇥ I(Bijk = b2)

+ 0.5⇥ I(Pijk = c2),

where r is the round of the experiment. In other words, the effect of level ‘a2’ increases
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over rounds, the effect of ‘b2’ decreases over rounds, and ‘c2’ has a constant effect.

The utility for the scenario in which there are no round effects, is calculated more

simply as:

UNo round-effect
ijk =N (0, 0.001)

+ 1⇥ I(Aijk = a2)

+ 0.2⇥ I(Bijk = b2)

+ 0.5⇥ I(Pijk = c2).

For each pair of profiles within the experiment, the profile that yields the higher utility

gets assigned 1 and the other profile gets assigned 0. We calculate this separately for the

round-effect and no round-effect utility calculations, yielding two experimental datasets.

We then estimate the OMCEs for each dataset, as detailed in Section 2, including the

round number indicator as a training variable. This allows BART to flexibly use the round

as an effect predictor if it helps refine predictions. In expectation, if there are no carryover

or stability issues, then the round indicator variable should be uninformative. We then

aggregate the OMCEs to the RMCE level by averaging the estimates within each round,

for each hypothetical subject. Finally, we calculate the correlation between the estimated

RMCEs and the round-number.

Figure C2 plots the distribution of these correlation coefficients by scenario and at-

tribute, across the simulated experiments. For the no round-effects condition, each at-

tribute’s distribution is centred on zero as expected – verifying that there is little informa-

tion to be gleaned from the round indicator. For the round-effects scenario, however, there

is a clear positive correlation for attribute A, and conversely a negative correlation for at-

tribute B – clear evidence that the stability and no carryover assumption has been violated.

Most interestingly, the relationship between round and attribute appears to have “leached"

into the RMCE predictions for attribute C, despite the fact that in this scenario the marginal

effect of C is unrelated to the round of the experiment. This clearly demonstrates why en-
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suring this assumption holds is so important – it may lead to biased estimates of attributes

even if they are individually “well-behaved.

C4 OLS method comparison

In Figure 2 in the main paper, we demonstrate the ability of our BART method to effectively

detect simulated heterogeneity. Table C8 reports the resulting correlations between the

covariates and conjoint attributes, across 100 simulations.

Table C8. Average correlations between simulation covariates and conjoint attributes, over
100 simulations

Attribute c1 c2

A1 0.998 0.000
A2 0.004 -0.557
A3 -0.003 0.074

In this section, we replicate this exercise but with the OLS method proposed by Zhirkov

(2022). Given the design requirements of this approach, we modify the simulation exercise

in two ways. First, to ensure adequate power, we increase the number of conjoint rounds

to 20 (with two profiles per round). Second, rather than force a choice between two

profiles (using the defined utility function), we simply rescale the underlying utility to a

0-7 scale, and round the responses to the nearest integer – to mimic a rating-scale conjoint

response. The underlying utility calculation and relationship between the binary (c1) and

interval (c2) covariates are the same as in the main paper.

For each simulated subject we estimate a separate OLS regression model and record

the coefficient for each of the three conjoint attributes (A1-3). Figures C3 and C4 plot the

ordered distribution of the estimated IMCEs, colored by c1 and c2 values respectively.4 As in

4The two figures do include 95 percent confidence intervals, but are very small and thus obscured by the
plotted points. Moreover, in the flat regions, the model is performing poorly and returning essentially
perfect fits.
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Figure C2. Simulation evidence demonstrating how violations of the no carryover assump-
tion can be detected by estimating the RMCE
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our proposed BART method, the OLS method does yield estimates that broadly align with

the defined expectations of the simulation for the binary covariate c1. In panel A1 of Figure

C3, the IMCEs are largely sorted by the value of c1. Note that the smooth continuity of this

distribution, compared to the distribution in the main paper, can be attributed to using a

rating scale outcome rather than the binary forced choice outcome. In Figure C4, although

there is some slight suggestion of a negative correlation, the expected relationship is much

harder to discern visually.

Figure C3. Detecting heterogeneity in IMCEs related to c1 using simulated conjoint data
derived from preferences over profiles, estimated with the OLS IMCE strategy

A3: Random heterogeneity
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As in the main paper, we repeat this simulation exercise 100 times and record the corre-

lation between each predicted IMCE and the two covariates in the design. Table C9 reports

the average correlations between the covariates c1 and c2 and the three distributions of IM-

CEs respectively. There is a substantively large correlation between c1 and A1, although

this correlation is not as strong as observed using the BART strategy in the main paper.

With respect to A2 and c2, we see a much smaller (but nevertheless negative) correlation.

Finally, as expected, we observe negligible correlations between c1 and A2 and A3, and
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Figure C4. Detecting heterogeneity in IMCEs related to c2 using simulated conjoint data
derived from preferences over profiles, estimated with the OLS IMCE strategy
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between c2 and A1 and A3.

It is noteworthy that across both binary and interval covariates, and compared to our

BART approach5, we observe relatively weaker correlations with the covariates, despite

using exactly the same underlying utility function to simulate the hypothetical subjects’

behavior. We suspect this is due to two factors. First, the OLS method cannot incorporate

or model interactions between the individual-level covariates and the attributes (since

there is no variation in these variables within each individual-level dataset). Second, us-

ing an an interval ratings outcome means smaller differences in utility lead to less stark

differences in observed outcomes between profiles.6 Researchers may want to consider

these factors when deciding which outcomes to measure in their conjoint experiment, if

analysing heterogeneity is a key part of the intended analysis.

5As well as the causal forest strategy detailed in Section E.
6This feature is in contrast to a forced-choice design, where even minuscule differences in utility between
profiles result in one observation being assigned an outcome of 1 and the other an outcome of 0.
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Table C9. Average correlations between simulation covariates and conjoint attributes, over
100 simulations

Attribute c1 c2

A1 0.690 -0.002
A2 0.002 -0.156
A3 -0.003 0.000
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D AMCE robustness check: further details and analysis

Hainmueller et al. (2014) conduct a conjoint experiment in which they consider the causal

effects of immigrants’ attributes on local individuals’ attitudes towards these individuals.

The study focuses on nine attributes of immigrants – including education, gender, country

of origin – where the values of these attributes (the levels) are randomised over two pro-

files, and subjects pick which of the two immigrants they would prefer to ‘give priority to

come to the United States to live’ (p.6).

To estimate the AMCEs parametrically, we run a linear probability model (LPM). We

estimate the following model:

ChosenImmigrant = ↵ + �1Education + �2Gender + �3CountryOfOrigin

+ �4ReasonForApplication + �5Job + �6JobExperience + �7JobPlans

+ �8PriorEntry + �9LanguageSkills,

where �k is the vector of coefficients for the l � 1 levels within the kth attribute.

We then supply the same information to a BART model (including the ethnocentrism

covariate embedded in the data) and recover the OMCE/IMCE estimates for each subject

in the data. To aggregate the parameter estimates to the average marginal component

effect, we simply take the average across the IMCEs.7 We then plot these BART-estimated

AMCEs against the parametric AMCEs as shown in Figure 3 in the main text. In Table

D1 we present these same AMCE comparisons numerically, which further demonstrates

the small divergence between parameter estimates for each attribute-level. Note that the

‘Seek Better Job‘ parameter estimate failed to converge under the LPM specification.

Table D2 reports the 95 percent confidence interval and 95 percent credible interval for

the AMCE estimates presented in Table D1. Overall, we find that the 95 percent credible

intervals are slightly wider than the confidence intervals. Readers should note these two

7This can be computed automatically within the cjbart package by calling summary() on the IMCE object.
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Table D1. Comparison of AMCE estimates for the Hainmueller et al. (2014) conjoint
experiment using LPM and cjbart methods

Coefficient Difference

Attribute Level LPM cjbart (% of LPM coefficient)

Education 4th Grade 0.03 0.04 10.59
8th Grade 0.06 0.06 -3.99
High School 0.12 0.12 -2.26
Two-Year College 0.15 0.16 1.23
College Degree 0.18 0.18 0.54
Graduate Degree 0.17 0.17 0.16

Gender Male -0.02 -0.02 -3.69
Country Of Origin Germany 0.05 0.04 -15.70

France 0.03 0.02 -14.79
Mexico 0.01 0.01 -19.85
Philippines 0.03 0.03 -18.62
Poland 0.03 0.03 -11.79
China -0.02 -0.02 -11.27
Sudan -0.04 -0.04 -6.83
Somalia -0.05 -0.05 -6.37
Iraq -0.11 -0.11 -1.61

Reason For Application Seek Better Job -0.04 -0.04 0.03
Escape Persecution 0.05 0.04 -14.14

Job Waiter -0.01 -0.01 -25.49
Child Care Provider 0.01 0.01 -33.60
Gardener 0.01 0.00 -37.07
Financial Analyst 0.04 0.03 -34.89
Construction Worker 0.04 0.03 -27.37
Teacher 0.07 0.06 -8.51
Computer Programmer 0.06 0.05 -20.68
Nurse 0.08 0.07 -9.02
Research Scientist 0.11 0.09 -11.97
Doctor 0.14 0.13 -6.61

Job Experience 1-2 Years 0.06 0.06 -1.87
3-5 Years 0.11 0.11 -0.46
5+ Years 0.11 0.11 -1.24

Job Plans Contract with Employer 0.12 0.12 -3.29
Interviews with Employer 0.03 0.02 -23.21
No Plans to Look for Work -0.16 -0.16 1.43

Prior Entry Once as Tourist 0.06 0.06 0.50
Many Times as Tourist 0.05 0.05 1.41
Six Months with Family 0.07 0.06 -13.29
Once w/o Authorization -0.11 -0.11 1.76

Language Skills Broken English -0.06 -0.06 -0.03
Tried English but Unable -0.13 -0.13 -0.66
Used Interpreter -0.16 -0.16 -0.69
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uncertainty estimates are not directly comparable – the former being a frequentist statistic

and the latter a Bayesian statistic.

Tables D3 and D4 replicate the same exercise for the Duch et al. (2021) data. The

differences in parameter estimates across the two strategies are very small: typically less

than a percentage point and at indistinguishable at two decimal places. These very small

differences are most likely due to the large number of observations in this experiment. As

before, while direct comparison is not possible, we find the credible interval is wider than

the LPM confidence interval.

25



Table D2. AMCE uncertainty estimates for the Hainmueller et al. (2014) conjoint experi-
ment using LPM and cjbart methods

LPM cjbart

Attribute Level 95% Conf. Interval 95% Cred. Interval

Education 4th Grade [0.00,0.06] [-0.01,0.08]
8th Grade [0.03,0.09] [0.02,0.10]
High School [0.09,0.15] [0.03,0.17]
Two-Year College [0.12,0.19] [0.08,0.24]
College Degree [0.15,0.21] [0.08,0.25]
Graduate Degree [0.14,0.20] [0.10,0.22]

Gender Male [-0.04,-0.01] [-0.05,0.00]
Country Of Origin Germany [0.01,0.08] [0.00,0.09]

France [-0.01,0.06] [-0.05,0.08]
Mexico [-0.03,0.04] [-0.03,0.06]
Philippines [0.00,0.07] [-0.01,0.08]
Poland [0.00,0.07] [-0.01,0.09]
China [-0.06,0.02] [-0.07,0.03]
Sudan [-0.08,-0.01] [-0.11,0.00]
Somalia [-0.09,-0.02] [-0.11,0.00]
Iraq [-0.15,-0.07] [-0.20,-0.04]

Reason For Application Seek Better Job [-0.06,-0.02] [-0.07,-0.02]
Escape Persecution [0.02,0.08] [-0.04,0.10]

Job Waiter [-0.04,0.02] [-0.07,0.07]
Child Care Provider [-0.02,0.04] [-0.04,0.09]
Gardener [-0.02,0.04] [-0.05,0.10]
Financial Analyst [0.00,0.09] [-0.02,0.13]
Construction Worker [0.00,0.07] [-0.01,0.10]
Teacher [0.03,0.10] [0.01,0.14]
Computer Programmer [0.01,0.11] [-0.02,0.14]
Nurse [0.05,0.11] [0.03,0.15]
Research Scientist [0.06,0.15] [0.00,0.18]
Doctor [0.09,0.18] [0.06,0.21]

Job Experience 1-2 Years [0.04,0.09] [0.02,0.10]
3-5 Years [0.09,0.13] [0.04,0.15]
5+ Years [0.09,0.14] [0.06,0.15]

Job Plans Contract with Employer [0.10,0.15] [0.03,0.20]
Interviews with Employer [0.00,0.05] [0.00,0.05]
No Plans to Look for Work [-0.18,-0.14] [-0.22,-0.10]

Prior Entry Once as Tourist [0.03,0.08] [0.00,0.09]
Many Times as Tourist [0.03,0.08] [0.00,0.09]
Six Months with Family [0.05,0.10] [0.00,0.10]
Once w/o Authorization [-0.14,-0.09] [-0.18,-0.05]

Language Skills Broken English [-0.08,-0.03] [-0.13,-0.01]
Tried English but Unable [-0.15,-0.11] [-0.20,-0.06]
Used Interpreter [-0.18,-0.14] [-0.24,-0.09]
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E Causal Forest alternative estimation

As noted in the main text, our strategy can be generalised beyond the specific BART imple-

mentation that we pursue. One particularly interesting alternative is to use Causal Forests

(Athey and Wager 2019). This strategy follows a similar logic to random forests where

the final prediction is the average over many separate tree-models. Causal forests differ by

using causal rather than decision trees: recursive partitions of the datas where splits are

optimized to find treatment effect heterogeneity. In other words, each tree aims to parti-

tion the data such that the treatment effects within nodes are similar, but the conditional

average treatment effects differ across nodes.

While this approach directly embeds intuitions about treatment effect heterogeneity

into the estimation process, it nevertheless has some limitations compared to our proposed

strategy in the main paper. Causal forests can currently only estimate treatment effects for

binary treatment indicators. In the case of conjoint experiments, therefore, this has two

important implications. First, where conjoint attributes have three or more levels, using

causal forests requires running separate models for each binary comparison between the

reference level and every other level. For example, a five-level attribute would require

running four separate models. Moreover, since the treatment indicator must be binary, any

experimental observations where the Lth attribute is neither the reference or current level

of interest have to be dropped, resulting in fewer training examples.

E1 Simulation test

As in Section 2.2 of the main paper, and in Section C4 of the Appendix with respect to

the Zhirkov (2022) OLS method, we test the causal forest estimation strategy using Monte

Carlo simulation. We use use exactly the same utility specification and design as in the

main paper, where 500 hypothetical subjects make a forced-choice between two profiles
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across 5 rounds of the experiment.

To estimate the IMCEs, and as noted as a limitation above, we run separate causal forest

models for each of the three binary attributes in the simulated conjoint design. Prior to

our main analysis, we also use the causal forests’ inbuilt tuning algorithm to optimise all

hyperparameters. We extract these optimal parameters once, and use them across all the

models we estimate.

Figures E1 and E2 plot the estimated IMCEs by magnitude, colored by the values of

the two covariates c1 and c2 respectively. The results are very similar to the BART analysis

reported in the main paper: the models effectively distinguish both the binary relationship

between c1 and A1, as well as the more complex continuous relationship between c2 and

A2. Table E1 confirms this analysis via Monte Carlo simulation: the causal forest models

correctly detects the designed correlations and otherwise finds negligible relationships, as

we would expect.

Figure E1. Detecting heterogeneity in IMCEs related to c1 using simulated conjoint data
derived from preferences over profiles, estimated with the causal forest algorithm
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Figure E2. Detecting heterogeneity in IMCEs related to c2 using simulated conjoint data
derived from preferences over profiles, estimated with the causal forest algorithm
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Table E1. Average correlations between simulation covariates and conjoint attributes, over
100 simulations estimated with the causal forest algorithm

Attribute c1 c2

A1 0.997 0.002
A2 0.007 -0.582
A3 0.004 0.070

E2 Applied test

To explore whether our results in the main paper are robust across estimating strategies,

we ran a causal forest model to estimate the IMCEs for the low income attribute-level

of the conjoint experiment. We first tune and train a causal forest model using the grf

package in R (Tibshirani et al. 2022), where the outcome is the binary choice variable,

the treatment variable is a binary indicator for the income attribute-level, and we supply a

training matrix of the other conjoint attributes plus the same covariates used in the BART

models. All observations where subjects were assigned the “Highest 20% income level"

were dropped prior to training, due to the limitations mentioned above.
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Figure E3. Comparison of IMCEs for the “Lowest 20% income level" attribute-level ordered
from smallest to largest and corresponding histogram of individuals’ self-reported ideology,
using the causal forest estimation strategy
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This causal forest model does not account for subject-level clustering of observations (see Figure E4).

Unlike in our BART strategy, the causal forest algorithm automatically returns pre-

dicted treatment effects rather than predicted outcomes. We therefore directly aggregate

the output of the causal forest model (OMCEs) to the level of IMCEs by averaging these

predictions for each individual separately.8

Figure E3 plots these IMCEs and the corresponding histogram of ideology values for

every subject in the experiment. These results follow the same pattern as those presented

in the main paper, with ideology clearly inversely related to the magnitude of the IMCEs:

more right-leaning subjects have smaller (albeit positive) IMCEs.

8Since variance estimation in causal forest uses a bootstrap of little bags (Athey et al. 2019), aggregating the
uncertainty estimates from the level of observation to the level of the individual is beyond the scope of this
paper.
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Causal forests also provide an in-built and simple variable importance measure (VIMP),

by calculating a weighted sum of the number of times each covariate is used to split the

data across all the trees in the forest. This measure is different from our BART strat-

egy, since in the causal forest case (and like with random forests) one can rely on the

independence of the estimates from each separate tree. In BART, since the trees are non-

independent (they are trained to model the residual variance of the T � 1 other trees),

interpreting split criteria directly is more challenging. Therefore, it is worth inspecting

how this intrinsic model metric from the causal forests algorithm identifies important co-

variates.

Table E2 reports the VIMP scores for the covariate attributes in the model. For cate-

gorical variables, each dummy factor is assigned a separate score and so we sum these to

get an importance measure for each covariate. Similar to our analysis in the main paper,

subject ideology is identified as an important predictor. The causal forest importance mea-

sure diverges from our own in two ways. First, the causal forest does not identify subjects’

country as an important predictor. We believe this difference is due to the fact that, for

our random forest based measure in the main paper, the trees are able to split on multiple

levels of the categorical variable at single decision nodes (as shown in Figure 5.) As a

result, our variable importance measure regularises itself by collapsing levels of categor-

ical variables. This is not possible in the causal forest measure since each node can only

split on one level at a time. Second, and perhaps relatedly, the causal forest measure iden-

tifies subjects’ age as an important feature. We are unsure precisely why this difference

exists, but we note that theoretically the importance measures are quite different (see the

discussion in Section 3.1), which may contribute to the divergence in scores.

Overall, these results help demonstrate two claims. First, that it is possible to substitute

the BART-specific implementation we discuss in the main paper with alternative OMCE

estimation strategies. Second, that our main substantive results appear robust to different
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Table E2. Variable importance scores for the “Lowest 20% income level" attribute-level,
using the intrinsic measure from the causal forest fitting algorithm

Covariate Variable Importance

Country 0.010
Education 0.046
Gender 0.041
Hesitancy 0.067
Ideology 0.131
Income 0.027
Mandatory Vaccination 0.090
Age 0.130
WTP Access 0.047
WTP Private 0.052

ML estimating strategies, providing further evidence of their robustness.

Finally, one advantage of causal forest estimation is the ability to model the subject-

clustering component of conjoint designs by supplying the subject identifiers to the algo-

rithm (see Athey et al. 2019). We can therefore assess whether deliberately clustering af-

fects our findings by comparing the results presented in Figure E3 with a clustered-variant

(as shown in Figure E4). Substantively, the results are very similar. The distribution of

right-leaning subjects stretches slightly further along the IMCE distribution, and the most

extreme IMCEs are slightly larger, but not drastically so and do not affect our interpretation

of the results.
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Figure E4. Causal forest estimation of IMCEs for the “Lowest 20% income level" by subject
ideology, accounting for subject-level clustering of observations
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F Example of pIMCE estimation

In Section 2.4 of the main paper, we extend the logic of the IMCE to cases where we do not

assume that possible profiles are distributed uniformly. In particular, we adapt the logic

of de la Cuesta et al. (2022) by weighting the IMCE potential outcomes by the marginal

distributions of the attributes in the population of interest.

To demonstrate this approach empirically, we consider a hypothetical case where we

alter the marginal distributions of the age, income, and vulnerability attributes based on

their distribution in US adult population. Table F1 summarises the population marginals

we use. To make our hypothetical scenario more realistic, we approximate the distribution

of age categories using the American Community Survey, by summing the proportion of

US adults whose age is closest to each attribute-level in the Duch et al. (2021) design.9

For the proportion of vulnerable adults, we use data provided by the Henry J Kaiser Family

Foundation, which found that 37.6% of US adults had a higher risk of serious illness due

to COVID-19.10 We divide this percentage equally between the two higher vulnerability

attribute-levels. For income, since the lower (upper) level refer to the 20% lowest (highest)

income levels, we follow these distributions in the marginal distribution of age. For the

remaining two attributes, we assume uniform distributions.

We first inspect the pIMCEs for the 65 year-old attribute-level, which our original anal-

ysis suggested was correlated with subjects’ own age. Figure F1 plots a comparison of the

pIMCE estimates against the original (unweighted) IMCEs generated from our standard

strategy, for each US respondent in the Duch et al. (2021) data. While we do not see sub-

stantially different estimates using the pIMCE strategy, there is a notable compression of

effect sizes into three distinct clusters. Figure F2 confirms this analysis: while the pIMCE

9The ACS categories do not perfectly align with the conjoint age levels, so these proportions are approximate.
We also scale the proportions to consider only US subjects aged 15 years and older.

10https://www.kff.org/coronavirus-COVID-19/issue-brief/how-many-adults-are-at-risk-of-serious-illness-if-
infected-with-coronavirus/ [Accessed 16th August 2022].
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Table F1. Assumed marginal distributions of attribute-levels in the population

Attribute Level Marginal Probability

Vulnerability Average 0.62
Moderate 0.19
High 0.19

Transmission All 0.33
Income Lowest 20% 0.20

Average 0.60
Highest 20% 0.20

Occupation All 0.13
Age 25 years old 0.33

40 years old 0.31
65 years old 0.22
79 years old 0.14

effects are slightly more extreme at either tail of the distribution, by and large they follow

the same sort of pattern and magnitude. The jumps in the pIMCE line reflect the clustering

of effect sizes seen in Figure F1. As shown in the bottom panels of Figure F2, however, the

distribution of these estimates across both the IMCEs and pIMCEs correlate similarly with

subjects’ age: the strongest effects are for older respondents who are closer to the age of

the attribute-level in question, consistent with our theoretical expectations.

Figures F3 and F4 repeat this exercise for the “High risk" transmission attribute-level in

the conjoint experiment. We use the same marginal distributions as presented in Table F1.

Here we see only minor differences between the IMCEs and pIMCEs for subjects. Similarly

the effects distribution, while clearly heterogeneous, does not correlate anywhere near as

strongly with subjects’ age (compared to when analysing the age attribute).
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Figure F1. Comparison of each US subjects’ pIMCE estimate for the “65 years old"
attribute-level, against the standard IMCE estimate
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Figure F2. Comparison of the distribution of subjects’ age against PIMCE and IMCE esti-
mates for the “65 years old" attribute-level

Shaded areas around the IMCE/pIMCE lines indicate the respective 95% credible intervals.
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Figure F3. Comparison of each US subjects’ pIMCE estimate for the “high risk" transmis-
sion attribute-level, against the standard IMCE estimate
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Figure F4. Comparison of the distribution of subjects’ age against PIMCE and IMCE esti-
mates for the “high risk" transmission attribute-level

Shaded areas around the IMCE/pIMCE lines indicate the respective 95% credible intervals.
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G Additional figures

Figure G1. Detecting heterogeneity in IMCEs using simulated conjoint data derived from
preferences over profiles (continuous covariate)
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Figure G2. IMCE predictions by ideology values, using models on trained k = 5 random
batches of the full experimental data
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Figure G3. IMCE predictions by ideology values, for the “65 years old" attribute-level
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